
Natural
User’s Guide

Version 5.1.1 for Windows

This document applies to Natural Version 5.1.1 for Windows and to all subsequent releases. Specifications
contained herein are subject to change and these changes will be reported in subsequent release notes or new
editions.

© June 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents
.................. 1User’s Guide - Overview
.................. 1User’s Guide - Overview
................ 2Natural Studio - Fundamentals
................ 2Natural Studio - Fundamentals
................. 3Starting/Terminating Natural
................. 3Starting/Terminating Natural
................... 3Starting Natural
............... 3Starting a Natural Online Session
................ 3How to Proceed after Logon
............... 4Starting a Natural Batch Session
.................. 5Terminating Natural
.............. 5Terminating a Natural Online Session
.............. 5Terminating a Natural Batch Session
.............. 6Configuring Your Natural Environment
.............. 6Configuring Your Natural Environment
................. 6Changing Default Settings
.............. 6Suppressing the Natural Startup Map
............... 6Defining Your Own Logon Library
............... 7Changing the Termination Method
............... 8Using Objects and Shared Resources
............... 8Using Objects and Shared Resources
................. 8What is a Natural Object?
.................... 8Object Types
................ 9Changing an Object’s Type
.................. 10Object Visualisation
................ 10Object Naming Conventions
................... 11Object Editors
................. 11Types of Object Editors
................ 11Invoking an Object Editor
.................. 11Object Commands
................... 13Object Operations
.................. 13Creating an Object
.............. 13Copying or Moving Objects - Rules
.................. 15Copying an Object
.................. 15Deleting Objects
.................. 15Exporting Objects
.................. 16Importing Objects
................... 16Moving Object
................... 17Listing Objects
.................. 17Printing Objects
................. 17Renaming an Object
.................. 18Object Retrieval
.................. 20Saving an Object
.................. 20Stowing an Object
................... 21Shared Resources
.................. 22Using Natural Libraries
.................. 22Using Natural Libraries
.................. 22Logon to a Library
............... 22Automatic Logon to a Library
................ 22Manual Logon to a Library
................... 22Library Types
................ 24Library Naming Conventions
.................. 24Library Commands

iCopyright © Software AG 2002

Table of ContentsXML Toolkit

.................... 24Library Operations

.................. 24Creating a New Library

................. 25Copying or Moving a Library

................... 25Deleting a Library

................... 25Renaming a Library

..................... 26Library Limit

................ 26Example Library for New Features

................... 27Using Workspace Options

................... 27Using Workspace Options

.................. 27Setting Workspace Options

.................. 27Display Success Messages

.................. 27Display Delete Messages

.................. 27Display Replace Messages

..................... 28Exit Prompt

................. 28Show Full Cat All Result List

.................. 28Perform Automatic Refresh

.................... 28Enable Plug-ins

.................... 28Terminal Emulation

................ 29Using Natural Output Window Options

................ 29Using Natural Output Window Options

.................. 29Output Window Features

................ 29Customizing the Mininimize Icon

............ 30Viewing/Modifying Output Window Profile Settings

................. 30Output Window General Profile

................. 30Activate report page buffer

................. 30Display input fields with frame

............... 30Display PF-key buttons with number

................... 30Display more prompt

.................... 30Disable ESC key

................... 30Disable help menu

.................... 31Fixed fonts only

................. 31Output Window Color Profile

.................. 31Output Window Font Profile

................ 31Invoking the Front Profile Dialog

............. 31Accepting Changes made to the Profile Settings

................... 32Using Session Parameters

................... 32Using Session Parameters

.................. 32Setting Session Parameters

............... 32Session Parameters Grouped by Function

................... 33Report Parameters

.................... 33Limit Settings

.................. 34Character Assignments

................... 35Compiler Options

.................... 36Field Appearance

.................... 37Error Handling

................... 37Data Representation

..................... 38Accessing Tools

..................... 38Accessing Tools

................. 38Invoking Development Tools

................. 38Development Tools Available

.................... 38Application Shell

................... 38Component Browser

..................... 38Debugger

.................... 38Error Messages

.................... 38Frame Gallery

.................... 39Natural Reporter

Copyright © Software AG 2002ii

XML ToolkitTable of Contents

.................... 39Object Handler

.................... 39Unlock Objects

..................... 39User Exits

................ 40Arranging Your Natural Environment

................ 40Arranging Your Natural Environment

............ 40Displaying the Natural Version of Your Environment

............ 40Working with Dockable/Floatable and MDI Windows

................ 40Dockable and Floatable Windows

.................... 41MDI Windows

..................... 42Using Online Help

.................... 42Using Online Help

................... 42Starting Online Help

............... 42Displaying the System Command List

................. 42Displaying Error Message Texts

.................. 43Natural Studio - Introduction

.................. 43Natural Studio - Introduction

............... 44Natural Studio - Features and Components

............... 44Natural Studio - Features and Components

.................. 44Natural Studio - Features

................ 46Natural Studio - Main Components

.................... 47Library Workspace

.................... 47Library Workspace

........... 47Switching the Library/Application Workspace On or Off

.................... 47Local Environment

................... 47Remote Environment

..................... 48Logical View

...................... 49Flat View

...................... 50File View

................. 51Multiple Document Interface Area

................. 51Multiple Document Interface Area

...................... 51List View

................... 52Opening a List View

................... 52List View Operations

................. 52Editors Available in MDI Area

............... 52MDI Window Navigation Accelerators

.................... 53Toolbars and Menus

.................... 53Toolbars and Menus

..................... 53Introduction

.................... 54Hiding a Toolbar

................... 54Positioning a Toolbar

..................... 55Results Window

..................... 55Results Window

.............. 55Switching the Results Window On and Off

.................. 55Using the Results Window

..................... 56Results Interface

..................... 56Results Interface

................. 56Purpose of the Results Interface

................ 56Results Window Control Bar Access

..................... 57Tab Handling

.................... 57Image Handling

................... 57Context-Menu Handling

................... 58Command Handling

.................... 58Column Handling

..................... 58Row Handling

..................... 59Data Handling

.................... 59Selection Handling

iiiCopyright © Software AG 2002

Table of ContentsXML Toolkit

..................... 60Command Line

..................... 60Command Line

.................. 60Using the Command Line

................ 60Display or Hide the Command Line

.............. 60Associate an Object with the Command Line

....................... 62Status Bar

...................... 62Status Bar

.................. 62Purpose of the Status Bar

................ 62Switching the Status Bar On or Off

.................... 62Status Bar Option

..................... 63Context Menus

..................... 63Context Menus

...................... 64Accelerators

...................... 64Accelerators

................ 64Accelerators Grouped by Categories

................ 64Generally Available Accelerators

................. 65Dialog Editor Accelerators

................. 67Program Editor Accelerators

................. 67Data Area Editor Accelerators

............... 68Alphabetical Overview of Accelerators

...................... 71Commands

...................... 71Commands

................. 71Purpose of Natural Commands

.................. 71Issuing Natural Commands

..................... 72Manual Refresh

..................... 72Manual Refresh

.................. 72Purpose of a Manual Refresh

................. 72Performing a Manual Refresh

...................... 73Customizing

...................... 73Customizing

...................... 74Commands

...................... 74Commands

.................... 74Editing a Toolbar

.............. 74Adding User-Defined Commands to a Toolbar

................ 74Removing Commands from a Toolbar

............... 74Rearranging Commands in the Toolbar

....................... 75Toolbars

....................... 75Toolbars

................ 75Invoking the Toolbars Dialog Box

.................... 75Creating a Toolbar

.................... 75Selecting a Toolbar

................... 75Removing a Toolbar

....................... 76Keyboards

...................... 76Keyboards

............... 76Changing Accelerator Key Assignments

................. 76Removing a Key Assignment

.............. 76Resetting Your Personal Key Assignments

..................... 77User Commands

..................... 77User Commands

................ 77Invoking the User Commands Dialog

.................. 77Defining a User Command

............. 77Adding a User Command to an Existing Toolbar

................ 79Tutorial - Getting Started with Natural

................ 79Tutorial - Getting Started with Natural

.............. 79Session 1 - Creating and Modifying a Program

............... 82Session 2 - Creating and Editing a Map

Copyright © Software AG 2002iv

XML ToolkitTable of Contents

.............. 92Session 3 - Checking and Running a Program

............... 96Session 4 - Creating a Local Data Area

............... 103Session 5 - Creating a Global Data Area

.............. 109Session 6 - Creating an External Subroutine

................ 114Session 7 - Invoking a Subprogram

...................... 122Class Builder

...................... 122Class Builder

..................... 122Introduction

.................. 123What is the Class Builder?

............ 123Which Classes can be handled by the Class Builder?

.................. 125When is a Class saved?

.................... 125Class Comments

................... 126Class Builder Interface

.................... 127Logical View

..................... 132Flat View

................... 135Class Builder Nodes

..................... 136Class Nodes

................... 138Object Data Nodes

.................. 139GUID Local Data Nodes

.................... 141Interface Nodes

.................... 142Property Nodes

.................... 143Method Nodes

................. 144Method Implementation Nodes

................. 145Method Parameter Data Nodes

.................... 147Node Properties

...................... 147General

..................... 150Comments

.................... 151Identification

...................... 152Settings

..................... 153Definition

.................. 154Adding Class Components

...................... 154Link

...................... 155New

..................... 155New Class

.................. 157New Object Data Area

.................. 157New Interface Module

.................... 157New Interface

..................... 158New Method

.................... 158New Property

................. 160Renaming Class Components

................. 161Removing Class Components

...................... 161Unlink

...................... 162Delete

.................. 163Editing Class Components

...................... 163Classes

.................... 163Natural Objects

.................. 163Other Class Components

................ 164Using Interfaces from Several Classes

................ 164Creating a new Interface Module

............... 165Linking an existing Interface Module

................. 166Unlinking an Interface Module

.................... 166Interface Nodes

.................... 167Locking Concept

................... 167Locking of Classes

................. 167Locking of Interface Modules

...................... 168Tutorial

vCopyright © Software AG 2002

Table of ContentsXML Toolkit

..................... 168New class

................... 168Linking Object Data

................... 169Creating an Interface

................... 169Creating Methods

................... 169Creating Properties

................. 169Using an Interface Module

................ 170Linking a GUID Local Data Area

.................... 170Activation Policy

................... 171Save and Stow Class

...................... 171Register

...................... 172Glossary

................... 172External Interface

.................... 172Internal Interface

.................. 172Method Implementation

.................. 172Property Implementation

..................... 173Program Editor

..................... 173Program Editor

................. 173Modifying Program Contents

.................... 173Selecting Text

.................... 174Copying Text

..................... 174Cutting Text

..................... 175Pasting Text

.................... 175Deleting Text

................ 176Undoing/Redoing Text Changes

.................. 176Renumbering a Program

.................. 177Finding Source Contents

.................. 177Searching for Source Text

................. 179Searching for a Line Number

.............. 180Editing/Listing Referenced Natural Objects

.................. 180Splitting the Editor Window

................ 180Jumping between Split Screens

............... 181Expanding/Collapsing Object Listings

.............. 181Making Listings Expandable/Collapsible

............. 182Collapsing and Expanding Program Structures

.................. 182Additional Information

................. 183Recording/Replaying Keystrokes

................. 184Using Context-Sensitive Help

..................... 184Syntax Help

................... 185Setting Editor Options

.................... 187Syntax Coloring

.................... 187Font Definition

.................. 188Status Bar Information

...................... 189Map Editor

...................... 189Map Editor

................. 189Inserting Map Fields and Menus

.................. 191Modifying Map Contents

.................... 191Selecting Fields

................... 191Deselecting Fields

.................... 192Copying Fields

.................... 192Cutting Fields

.................... 192Pasting Fields

.................... 193Deleting Fields

.................... 193Moving Fields

.................... 193Resizing Fields

.................... 193Aligning Fields

.................... 193Importing Fields

Copyright © Software AG 2002vi

XML ToolkitTable of Contents

................. 194Importing System Variables

.................. 195Keyboard Equivalents

..................... 196Defining Fields

................... 196Defining Text Fields

................... 197Defining Data Fields

.................. 198Defining Selection Boxes

............... 199Defining Constant Selection Box Items

............... 199Defining Variable Selection Box Items

.................. 200Defining a Radio Button

.................. 201Defining a Toggle Button

................... 201Defining Menu Items

................... 202Adding a Menu Item

.................. 203Adding a Menu Separator

.................. 203Modifying a Menu Item

.................. 204Removing a Menu Item

.................. 204Defining Push Buttons

................... 205Defining Bitmaps

.................. 206Defining Field Attributes

.................... 208Defining an Array

.............. 210Modifying Field Colors and Representation

.................... 210Using Field Rules

................... 211Creating Field Rules

................... 211Copying Field Rules

................... 212Editing Field Rules

.................. 212Changing Field Rule Rank

................ 212Unlinking or Deleting Field Rules

................. 213Defining Free Predict Rules

............... 213Converting Free Rules to Inline Rules

................... 214Defining Key Rules

................. 215Defining Data Areas for Maps

.................. 215Defining a Data Element

.................. 215Modifying a Data Element

.................. 216Removing a Data Element

..................... 216Testing Maps

.................... 216Previewing Maps

..................... 216Flipping Maps

.................. 217Modifying the Map Profile

................... 220Setting Editor Options

.................. 220Status Bar Information

..................... 221Data Area Editor

..................... 221Data Area Editor

................... 221General Information

.................... 222Column Header

............... 223Generating Copycode from a Data Area

.................. 223Modifying Data Definitions

.................... 223Modifying Fields

.................... 224Copying Fields

.................... 224Cutting Fields

.................... 224Pasting Fields

.................... 225Deleting Fields

.................... 225Inserting Fields

................... 226Inserting a Data Field

................... 226Defining an Array

............... 227Initializing the Value for a Data Field

............... 227Initializing Values in Free-form Mode

................. 228Inserting a Global Unique ID

viiCopyright © Software AG 2002

Table of ContentsXML Toolkit

................... 228Inserting a Constant

.................. 229Inserting a Data Block

.................. 229Inserting a Data Structure

................... 230Inserting a Handle

.................. 233Searching for Data Fields

................... 234Setting Editor Options

...................... 234Navigating

...................... 235DDM Editor

...................... 235DDM Editor

.................... 235DDMs Window

..................... 236Adding DDMs

............... 236Adding DDMs from Adabas Databases

............... 236Adding DDMs from SQL Databases

............... 237Additional Options for VSAM Files

.................... 238Data Conversion

.................. 245Modifying DDM Contents

.................... 245Selecting Fields

................. 245Selecting Attributes in Fields

.................... 246Copying Fields

.................... 246Cutting Fields

.................... 246Pasting Fields

.................... 247Deleting Fields

.................... 247Inserting Fields

................... 248Modifying DDM Fields

........... 248Modifying Extended Attributes under a Local Enviroment

.......... 248Modifying Extended Attributes under a Remote Enviroment

................ 250Displaying Descriptor Information

.................. 250Modifying a DDM Header

................ 250Modifying Coupling Information

.................. 251Searching for DDM Fields

................... 253Editor Window Layout

................... 253Setting Editor Options

................... 253DDM Editor Options

.................. 253Status Bar Information

.................... 255Column Header

...................... 257Dialog Editor

...................... 257Dialog Editor

................... 257General Information

................... 258Dialog Editor Window

.............. 259Changing the Initial Position of the Dialog

............... 259Changing the Initial Size of the Dialog

............... 259Selecting/Deselecting Dialog Elements

................. 259Aborting Mouse Operations

............. 260Creation Mode in Map Editor and Dialog Editor

.............. 260Changing the Position of a Dialog Element

............... 260Changing the Size of a Dialog Element

................... 260Moving the Pointer

.............. 261Simulating the Mouse with the Spacebar

.......... 262Opening Windows and Dialog Boxes Using The Keyboard

................... 262Scrolling in a Dialog

................... 262Using the Clipboard

.................... 263Editing Dialogs

................ 263Editing a Dialog’s Source Code

................. 264Editing a Dialog’s Attributes

................ 264Editing a Dialog’s Event Handlers

................. 265Defining a Dialog’s Menu Bar

Copyright © Software AG 2002viii

XML ToolkitTable of Contents

................. 265Defining a Dialog’s Toolbar

............. 265Creating and Maintaining Timers for a Dialog

............... 266Adding a Comment Section to a Dialog

........... 266Defining a Parameter or Local Data Area for a Dialog

.............. 266Selecting a Global Data Area for a Dialog

.............. 267Defining an Inline Subroutine for a Dialog

.............. 267Defining the Control Sequence in a Dialog

..................... 267Dialog Wizard

.................. 269Creating Dialog Elements

................... 270Importing Data Fields

................... 271Editing Dialog Elements

.................. 271Cutting a Dialog Element

.................. 271Copying a Dialog Element

............. 271Pasting a Dialog Element from the Clipboard

.................. 272Deleting a Dialog Element

......... 272Selecting all Dialog Elements with the same Parent in a Dialog

............... 273Editing a Dialog Element’s Attributes

.............. 273Editing a Dialog Element’s Event Handlers

............. 273Unifying the Size of Several Dialog Elements

............ 274Aligning the Position of Several Dialog Elements

........... 274Unifying the Spacing Between Several Dialog Elements

................. 274Stretching a Dialog Element

............... 275Organizing An Application’s Help File

.............. 277Using The Help Organizer’s Main Dialog

................... 279Generating Help IDs

................ 279Extending A Help ID Definition

................. 280Editing The Global Topic List

................... 281Setting Editor Options

............... 281Enabling The Enhanced Listing Option

............... 282Displaying Or Hiding The Status Bar

.............. 282Turning The Crosshair Cursor On And Off

................ 282Turning Autoscroll On And Off

............ 283Displaying The Dialog Inside Or Outside The Editor

................... 283Displaying Bitmaps

................ 283Displaying Or Hiding The Grid

.................. 284Customizing The Grid

............. 284Saving Editor Options With A Particular Dialog

............ 285Attributes Windows for Dialogs and Dialog Elements

............... 285ActiveX Control Attributes Window

................ 288ActiveX Control Property Pages

................ 288Bitmap Control Attributes Window

................ 290Canvas Control Attributes Window

.............. 292Control Box Control Attributes Window

.................. 293Dialog Attributes Window

................ 296Dialog Context Menus Window

............... 297Edit Area Control Attributes Window

.............. 299Group Frame Control Attributes Window

............... 300Input Field Control Attributes Window

............... 302List Box Control Attributes Window

................... 304Menu Editor Window

.............. 307OLE Container Control Attributes Window

............... 308Selecting an OLE Server or Document

.............. 312Push Button Control Attributes Window

.............. 314Radio Button Control Attributes Window

............... 316Scrollbar Control Attributes Window

.............. 318Selection Box Control Attributes Window

ixCopyright © Software AG 2002

Table of ContentsXML Toolkit

.................. 320Signal Attributes Window

............... 322Status Bar Control Attributes Window

.............. 324Status Bar Control Attributes Subwindow

.................. 326Table Attributes Window

................. 328Table Attributes Subwindow

.............. 330Text Constant Control Attributes Window

.................. 331Timer Attributes Window

.............. 332Toggle Button Control Attributes Window

................. 334Toolbar Attributes Window

............... 335Tool Bar Control Attributes Window

.............. 338Tool Bar Control Attributes Subwindow

..................... 340Dialog Boxes

...................... 340Array

................. 340Data Area - Local, Parameter

................... 341Data Area - Global

................... 341Dialog Compile Error

...................... 342Events

................... 344Import Data Field

...................... 344Font

...................... 345Source

..................... 346Subroutines

.................... 347Component Browser

.................... 347Component Browser

..................... 347Introduction

..................... 347User Interface

..................... 347Tree View

...................... 348Order

...................... 349Data View

................ 350Interaction Tree View and Data View

...................... 350Group

................... 350ActiveX Component

..................... 352Interface

....................... 356Menu

................ 357Application Development Support

.................. 357Example Construction

................... 362Automation Objects

..................... 365Interfaces

..................... 367Plug-In Manager

..................... 367Plug-In Manager

................. 367Purpose of the Plug-In Manager

.................. 367Enabling Plug-In Activation

................. 367Activating the Plug-In Manager

................ 368Deactivating the Plug-In Manager

.................. 368Using the Plug-In Manager

................. 368Natural Studio Sample Plug-In

............. 369Purpose of the Natural Studio Sample Plug-In

................. 369Activating the Sample Plug-In

.................. 369Using the Sample Plug-In

................ 369Deactivating the Sample Plug-In

................ 370Large and Dynamic Variables/Fields

................ 370Large and Dynamic Variables/Fields

..................... 370Introduction

................. 370Definition of Dynamic Variables

................ 371System Variable *LENGTH - field

................... 371Size Limitation Checks

................ 371Statements EXPAND and REDUCE

Copyright © Software AG 2002x

XML ToolkitTable of Contents

.................. 372Usage of Dynamic Variables

............... 372Assignments with Dynamic Variables

................ 375Initialization of Dynamic Variables

............ 375String Manipulation with Dynamic Alpha Variables

.......... 376Logical Condition Criterion - LCC - with Dynamic Variables

.............. 378Parameter Transfer with Dynamic Variables

............ 382Work File Access with Large and Dynamic Variables

.......... 382DDM Generation and Editing for Varying Length Columns

................ 383Accessing Large Database Objects

............. 385Performance Aspects with Dynamic Variables

............... 386Introduction to Event-Driven Programming

............... 386Introduction to Event-Driven Programming

............... 386What is an Event-Driven Application?

................. 387Program-Driven Applications

................. 387Event-Driven Applications

.................. 388What is Happening Here?

................. 388Writing Event-Driven Code

............. 388Components of an Event-Driven Application

................. 390GUI Development Environments

.................... 391GUI Design Tips

................... 392Do Your Research

.................... 392Screen Design

.................... 393Menu Design

..................... 394Color Usage

................... 394Consistency Check

............... 395Tasks Involved in Creating an Application

.................... 396Tutorial - Overview

.................... 397Creating a Dialog

................ 398Assigning Attributes to the Dialog

.............. 399Creating Dialog Elements Inside the Dialog

.............. 401Assigning Attributes to the Dialog Elements

.............. 402Creating the Application’s Local Data Area

............ 402Attaching Event Handler Code to the Dialog Element

............. 403Checking, Stowing and Running the Application

.................... 404Basic Terminology

................ 407Event-Driven Programming Techniques

................ 407Event-Driven Programming Techniques

................. 408How To Open and Close Dialogs

................... 408Opening a Dialog

.............. 411Processing Steps When Opening a Dialog

.................... 411Closing Dialogs

................. 412Initializing Attribute Values

............. 413How To Edit a Dialog’s Enhanced Source Code

............. 413What Is The Enhanced Source Code Format ?

........ 414Avoiding Incompatibilities Between Dialog Editor And Program Editor

............. 415How To Use The Enhanced Source Code Format

.......... 416How Dialogs, Controls and Items Are Related Hierarchically

................. 418How To Define Dialog Elements

................... 418HANDLE OF GUI

................... 419NULL-HANDLE

................ 420How To Manipulate Dialog Elements

............ 421Querying, Setting and Modifying Attribute Values

..................... 421Restrictions

............... 422Numeric/Alphanumeric Assignment

........... 424How To Create and Delete Dialog Elements Dynamically

................... 424Global Attribute List

xiCopyright © Software AG 2002

Table of ContentsXML Toolkit

........... 424Creating Dialog Elements Statically and Dynamically

......... 425How to Handle Events of Dynamically Created Dialog Elements

.............. 427How To Enable and Disable Dialog Elements

................ 427Defining and Using Context Menus

..................... 427Construction

..................... 428Association

..................... 429Invocation

.................. 431Sharing of Context Menus

.................... 432System Variables

................... 432Generated Variables

.................... 432#DLG$PARENT

................... 433#DLG$WINDOW

........... 434Message Files and Variables as Sources of Attribute Values

................. 434Triggering User-Defined Events

................ 435Passing Parameters to the Dialog

.................... 437Suppressing Events

............... 438Menu Structures, Toolbars and the MDI

.................. 438Creating a Menu Structure

.............. 439Parent-Child Hierarchy in Menu Structures

................... 439Creating a Toolbar

......... 440Sharing Menu Structures, Toolbars and DILs (MDI Application)

................ 442Executing Standardized Procedures

.................. 442PROCESS GUI Statement

.............. 444Linking Dialog Elements to Natural Variables

................ 446Validating Input in a Dialog Element

........... 447Storing and Retrieving Client Data for a Dialog Element

.............. 449Creating Dialog Elements on a Canvas Control

................. 453Working with ActiveX Controls

............... 460Using The PROCESS GUI Statement

............... 464Working with Arrays of Dialog Elements

.................. 466Working with Control Boxes

................ 466Purpose of exclusive control boxes

.............. 466Examples of use of exclusive control boxes

................. 469Creation of the wizard pages

............. 469Switching between the wizard pages at edit-time

.................. 469Creating the divider line

............ 470Implementing the ’Back’ and ’Next’ push buttons

............... 470Clearing all controls on a wizard page

................. 471Example 2 - a tabbed dialog

.................. 472Working with Error Events

............. 472Working with a Group of Radio-Button Controls

.......... 473Working with List-Box Controls and Selection-Box Controls

................. 475Working with Nested Controls

............... 475Which control types can be containers?

.................. 476Creating a nested control

.......... 476Multiple selection, control sequence and clipboard operations

.............. 478Working with a Dynamic Information Line

.................. 479Working with a Status Bar

................ 479Working with Status Bar Controls

................. 479Creating a Status Bar Control

............... 480Using status bar controls without panes

................. 480Stretchy vs. non-stretchy panes

............... 480Outputting text to a status bar control

.............. 481Sharing a status bar in an MDI applications

................. 481Pane-specific context menus

........... 482Working with Dynamic Information Line and Status Bar

Copyright © Software AG 2002xii

XML ToolkitTable of Contents

.............. 484Adding a Maximize/Minimize/System Button

..................... 484Defining Color

................. 486Adding Text in a Certain Font

................... 487Adding Online Help

............... 489Defining Mnemonic and Accelerator Keys

................. 489Defining a Mnemonic Key

................. 489Defining an Accelerator Key

............... 490Displaying Accelerator Keys in Menus

................. 491Dynamic Data Exchange - DDE

..................... 491Concepts

............... 492Developing a DDE Server Application

............... 492Developing a DDE Client Application

.................... 493Return Codes

............... 495Object Linking and Embedding - OLE

............... 495What Is OLE In The Natural Context?

................. 496The OLE Container Control

.................. 500SYSMAIN Utility - Overview

.................. 500SYSMAIN Utility - Overview

................... 500SYSMAIN Command

..................... 501Copy Object

.................. 501Available XREF Options

..................... 502Move Object

..................... 503Rename Object

..................... 504Delete Object

..................... 504List an Object

..................... 505Find Object

................. 505Importing Objects to a Library

............... 506Invoking SYSMAIN by a Subprogram

................... 506Direct Commands

.............. 509Additional Keywords for Direct Commands

................... 510Tamino Server Extensions

................... 510Tamino Server Extensions

..................... 510Introduction

...................... 510Overview

............... 511Developing a Tamino Server Extension

..................... 511Overview

............... 511Set the Library SYSEXSXS as Steplib

............... 511Create a New Library for Your Project

.................. 512Create a NaturalX Class

................. 512Create the Object Data Area

.................. 512Edit the Object Data Area

................. 512Link the Connection Interface

................ 513Implement the Method Connect

................ 513Add Server Extension Functions

................. 515Save and Catalog the Class

.................... 515Using Callbacks

............... 516Deploying a Tamino Server Extension

................ 516Installing a Tamino Server Extension

................. 516Tamino Server Extension Sample

...................... 518XML Toolkit

...................... 518XML Toolkit

xiiiCopyright © Software AG 2002

Table of ContentsXML Toolkit

User’s Guide - Overview
The Natural User’s Guide describes features of the Natural Studio that you will use on a daily basis to create and
maintain applications. First, you are introduced to the landscape of the graphical user interface so that you
always find what you need exactly when you need it. Then you are provided with a task-oriented description of
each of the major editors and tools used to create applications: the Program Editor, Data Area Editor, Map
Editor, DDM Editor and Dialog Editor, the Class Builder and the Component Browser.

Tutorials are provided to demonstrate how Natural applications can be structured and how to get the most out of
the features of each tool. Note that it is outside the scope of this documentation to provide you with a
comprehensive methodology for developing applications. This documentation cannot replace a hands-on training
course in Natural programming.

Natural Studio - Fundamentals

Natural Studio - Introduction

Tutorial - Getting Started with Natural

Class Builder

Program Editor

Map Editor

Data Area Editor

DDM Editor

Dialog Editor

Component Browser

Plug-In Manager

Introduction to Event-Driven Programming

Event-Driven Programming Techniques

SYSMAIN Utility

Tamino Server Extensions

XML Toolkit

Readers of this documentation are assumed to have a fundamental working knowledge of Microsoft Windows
and the terminology used to describe it. If not, consult the Windows documentation for a description of basic
Windows elements, usage and terminology.

Natural Error Messages

Natural error messages can be retrieved online. You can open the menu "Help - Natural Errors" in the menu bar
to get the help on errors dialog or you can type the help command into the command line.

Related Topics

Application Shell
Frame Gallery

1Copyright © Software AG 2002

User’s Guide - OverviewUser’s Guide - Overview

Natural Studio - Fundamentals
Starting/Terminating Natural

Configuring Your Natural Environment

Using Objects and Shared Resources

Using Natural Libraries

Using Workspace Options

Using Natural Output Window Options

Using Session Parameters

Accessing Tools

Arranging Your Natural Environment

Using Online Help

See also:

Natural Studio - Introduction
Application Shell
Frame Gallery

Copyright © Software AG 20022

Natural Studio - FundamentalsNatural Studio - Fundamentals

Starting/Terminating Natural
The following topics are covered below:

Starting Natural
Starting a Natural Online Session
How to Proceed after Logon
Starting a Natural Batch Session

Terminating Natural
Terminating a Natural Online Session
Terminating a Natural Batch Session

Note: As a prerequisite, general knowledge of how to use the mouse and the desktop is required to use this
product. If you are not sure how to use the mouse and/or desktop, please refer to the documentation of your
operating system in use.

See also:

Natural Execution Configuration (for information on the relevant parameters in the NATPARM module)
Profile Parameters (Detailed Descriptions)
Natural Configuration Utility (Usage)

Starting Natural

Starting a Natural Online Session

 To start a Natural session from your desktop

From the Start menu, choose Programs > Software AG Natural v.r.s> Natural .
- where v.r.s. is the Natural version, release, system maintenance level number.

While the program is loaded, the Natural startup map is displayed informing you about the loading in progress.
See also Suppressing the Natural Startup Map.

After logon, Natural Studio, the development environment for Natural, appears.

How to Proceed after Logon

When you start Natural for the very first time, the library workspace will be displayed on the left side of the
development environment with the current logon library selected. When Natural is restarted, the toolbars and
windows are placed at the same positions as when Natural was left the last time.

For details on how to proceed with Natural Studio or the Natural Configuration Utility, refer to:

Natural Studio - Features
Natural Studio - Main Components
Natural Configuration Utility
Changing Default Settings
Defining Your Own Logon Library

3Copyright © Software AG 2002

Starting/Terminating NaturalStarting/Terminating Natural

Starting a Natural Batch Session

You can start Natural in batch mode from the "Target" text box of the "Properties" of the Natural program-item
icon. For this purpose, it is currently necessary to create an additional Natural icon on your desktop, following
the procedure described below. (If you just copy an existing Natural program-item icon, the "Target" field may
not work..)

1. Use the New > Shortcut option of the context menu to create another Natural icon on your desktop.
2. In the command line of the "Create Shortcut" window, specify the path to the natural.exe file, for example:

"C:\Program Files\Software AG\Natural\5.1.1\Bin\natural.exe"
and follow the instructions.

3. Rename the newly created "natural.exe" icon, for example, to "Natural Batch"
4. Select this new Natural program-item icon
5. Click the right mouse button and choose the Properties option from the context menu.

The Natural Properties dialog box appears.
6. In the "Target" field, add the "batchmode" parameter, for example:

"C:\Program Files\Software AG\Natural\5.1.1\Bin\natural.exe" batchmode .

 To invoke Natural in batch mode from the "Target" text box

Click to the additional Natural program-item icon.

For information on the batch-mode-relevant profile parameters in the NATPARM module, refer to Batch Mode
(in the Natural Operations documentation, under the heading Profile Parameters Grouped by Function).

For special considerations that apply when running Natural in batch mode, see Natural in Batch Mode.

Copyright © Software AG 20024

Starting/Terminating NaturalStarting a Natural Batch Session

Terminating Natural

Terminating a Natural Online Session

 To terminate a Natural online session

From the Object menu, choose Exit ;
Or press ALT+F4;
Or enter the system command "FIN" in the command line;
Or execute a Natural program that contains a TERMINATE statement.

See also: Changing the Termination Method

Terminating a Natural Batch Session

A Natural batch mode session will be terminated when one of the following is encountered during the session:

a FIN command in the input dataset,
an end-of-input condition in the input dataset,
a TERMINATE statement in a Natural program which is being executed.

5Copyright © Software AG 2002

Terminating NaturalStarting/Terminating Natural

Configuring Your Natural Environment
This document summarizes the facilities you have to adapt your Natural environment to your specific needs. The
following topics are covered below:

Changing Default Settings
Suppressing the Natural Startup Map
Defining Your Own Logon Library
Changing the Termination Method

Changing Default Settings
By changing the default settings supplied, you can set up your own user profile. Refer to:

Profile Parameter Usage
This document describes how and where you can use Natural profile parameters to define various
characteristics of the Natural environment.
Profile Parameters Grouped by Function
Lists the individual parameters contained in the NATPARM parameter file (or an alternate parameter file)
that can be changed in the Natural Configuration Utility.
Natural Configuration Utility
Used to create and modify global and local configuration files and parameter files.
Configuration Files
These configuration files should only be modified by a system administrator.

Suppressing the Natural Startup Map
When you specify a colon ":" in the target edit control of the Natural short-cut property sheet, the Natural startup
map will be suppressed.

Example:
C:\Program Files\Software AG\Natural\ v.r.s \Bin\natural.exe :
- where v.r.s. is the Natural version, release, system maintenance level number.

To get to the target edit control

1. Right click on the Natural icon

on your desktop.

2. Then choose Properties.

Defining Your Own Logon Library
When you first log on to Natural, your logon library will be SYSTEM by default. You can define your own
logon library in the Natural environment or use a library set up for you by your administrator.

Copyright © Software AG 20026

Configuring Your Natural EnvironmentConfiguring Your Natural Environment

You can alter your default library from SYSTEM to any other library by setting the Natural profile parameter
INIT-LIB in the NATPARM module, using the Natural Configuration Utility.

Changing the Termination Method
Termination methods can also be modified in the NATPARM parameter file in node Program Loading/Deletion,
using the Natural Configuration Utility.

7Copyright © Software AG 2002

Changing the Termination MethodConfiguring Your Natural Environment

Using Objects and Shared Resources
This document describes the use of Natural objects and also the use of Shared Resources (Non-Natural objects).
The following topics are covered below:

What is a Natural Object?
Object Types
Object Visualisation
Object Naming Conventions
Object Editors
Object Commands
Object Operations
Object Retrieval
Shared Resources

See also:

Library Limit (for max. number of objects in a library)

What is a Natural Object?
An object in Natural terms is a programming module which is used in creating a Natural application. It is always
associated with a specific library. Several object types exist depending on the Natural application task (e.g. a
component-based application or an application providing a graphical user interface).

Object Types
Natural provides the following object types:

Data area
A module containing the descriptions of data to be used by a Natural program (which is a Natural object for
itself). It usually contains a declaration of user-defined variables and constants, as well as referenced
database fields in the form of data definition modules. Data areas can be global (capable of being shared by
two or more Natural programs), local (contained within programs), parameter data areas, or object data
areas.
Data definition module (DDM)
A logical grouping of database fields and field descriptions which makes it possible to access database
information from within a program. The data definition module must be referenced in a data area serving
the program.
Program
A set of instructions or actions that are executed procedurally.
Subprogram
A Natural object that is called by another Natural object. A subprogram can receive parameter values from
the Natural object which calls it. Passed parameters must be included in a parameter data area.
Subroutine
A Natural object that is called by another Natural object. A subroutine can receive parameter values from
the calling program. A subroutine has automatic access to the same global data area as the Natural object
which calls it.
Map
A layout for the information provided on screens referenced by another Natural object (for example, in a
program) for data input and output. In a map, the end user typically enters the information that is necessary
for processing a Natural object.

Copyright © Software AG 20028

Using Objects and Shared ResourcesUsing Objects and Shared Resources

Helproutine
A text element that can be assigned to a map or field in order to provide users with context-sensitive help
for an application.
Copycode
A portion of Natural source code which is automatically included in an external program when this program
is compiled. Copycode promotes modularization in applications by making it possible for many different
programs to use the same module of source code.
Text
Text can be added and modified with the program editor, and stored in a Natural library using the SAVE
command to store it. The naming conventions for Natural object types apply.
Dialog
Dialogs are used in conjunction with event-driven programming when creating Natural applications for
graphical user interfaces (GUIs). For further information, see Event-Driven Programming Techniques.
Class
(for further information, see NaturalX documentation and the Class Builder).
Resource
Resources are only available with Natural under Windows.

Changing an Object’s Type

You can change the type of any object except a DDM, map, or dialog. For the remaining objects, the following
restrictions apply:

A data area can be converted only to another type of data area: local, global, or parameter.
A programming object can be converted only to another type of programming object: program, subprogram,
subroutine, helproutine, copycode, text.

 To change an object’s type

1. Open the object and then, from the Object menu, choose Object Type.
A cascading menu is displayed listing all possible object types for selection.

2. Choose the type of object to convert to.
The new type is displayed in the title bar. The object must be saved to make the conversion complete.

9Copyright © Software AG 2002

Changing an Object’s TypeUsing Objects and Shared Resources

Object Visualisation
The Natural objects displayed can consist of the Natural source, the Natural generated program or both. The
difference is reflected by a bitmap. The green ball always indicates that a generated program is available, without
the green ball it is indicated that only the source of the displayed object is available and finally a green ball as a
non-greyed bitmap indicates that both a source and a generated program is available.

Object Naming Conventions
Length

The name of a Natural object can be 1 to 8 characters long.

Structure

The name of a Natural object can consist of the following characters:

Character Explanation

A - Z upper case alphabetical characters

0 - 9 numeric characters

- hyphen

@ commercial "at" sign

_ underline

/ slash

$ dollar sign

&
ampersand
(only as language code character)

hash/number sign

+ plus sign (only allowed as first character)

Additional Conditions

The first character of the name must be one of the following:
an upper-case alphabetical character (A - Z)
a hash/number sign (#)
a plus sign (+)

If the first character is a "#" or "+", the name must contain at least one additional character.

Copyright © Software AG 200210

Using Objects and Shared ResourcesObject Visualisation

Object Editors
Types of Object Editors
Invoking an Object Editor

Types of Object Editors

Natural provides the following object editors:

Data Area Editor
Used to create and maintain global data areas, local data areas, parameter data areas, and object data areas.
This editor has a column format that is designed for defining the user-defined variables and database fields
used in Natural programs, subprograms, subroutines and dialogs.
DDM Editor
Used to create and maintain data definition modules (DDMs).
Program Editor
Used to create and maintain Natural programs, subprograms, subroutines, helproutines, copycode, text and
classes (see also Class Builder).
Map Editor
Used to create and maintain maps. Extended field editing features make it possible to assign special
properties to fields. Processing rules can be attached to fields in the map.
Dialog Editor
Used to create event-driven applications composed of dialogs.
Class Builder
Used to create and maintain classes.

Invoking an Object Editor

 To invoke an object editor from the tree view

Double-click the object in the tree view.
Or click on the corresponding icon in the status bar.

 To invoke an object editor from the command line

Issue the system command EDIT.
If you select an existing object for editing, the appropriate editor is invoked automatically.

Object Commands
This section describes all of the System Commands that you can perform on Natural objects.

11Copyright © Software AG 2002

Object EditorsUsing Objects and Shared Resources

Command Purpose

EDIT Edit the source form of an object.

CLEAR Close the currently active object and open a new editor window
that has no content and no name.If this object has been modified
since the last save, you are prompted to save any changes.

CHECK Check the source code of an object for syntax errors.
Syntax checking is also performed as part of the RUN and STOW commands.

CATALOG Cataloging an object compiles the source program in the active
editor window and stores the resulting object module.
For a full description, see the CATALOG command.

UNCATALOG Delete one or more generated programs (GPs). An object can only
be uncataloged if it has already been cataloged.

SAVE Save the source form of the Natural object currently in the work area
of the editor. Syntax is not checked. A saved program can be RUN,
but not executed (see EXECUTE command below).

STOW Save the source form of an object, compile the object and store the
resulting generated program (GP) as well as the source. The object is
syntax-checked during the compilation process.

SCRATCH Delete the source and object form of an object. A list of all objects
stored in the current library will be displayed; on the list you can then
mark the object(s) to be deleted.

RUN Compile and execute a source program.

EXECUTE Execute a program that has been compiled and stored in object form.

DEBUG Invoke the Natural debugging facility for a cataloged program or dialog.
For further information, refer to the Natural Debugging documentation.

Copyright © Software AG 200212

Using Objects and Shared ResourcesObject Commands

Object Operations
The Object Operations such as copy, move, rename, delete, import or export can be applied inside the Library
Workspace and inside any open Listview. In contrast to the library workspace where only one object can be
selected at a time, multiple objects of a listview can be selected.

It is possible to use these operations in both the Local and Remote environment. The operations can also be used
across environments.

The following topics are covered below:

Creating an Object
Copying or Moving Objects - Rules

Valid Source Nodes
Valid Target Nodes

Copying an Object
Deleting Objects
Exporting Objects
Importing Objects
Moving Objects
Listing Objects
Printing Objects
Renaming an Object
Object Retrieval
Saving an Object
Stowing an Object

Creating an Object

 To create an object using a context menu

Select a library node, open the context menu, and select New with the corresponding object type.
Or select a group node in the logical view (e.g. "Programs") and choose New from the context menu.
The editor object of the currently selected object type is opened.
Note:
New classes can only be created in the Logical or Flat View. For more information, refer to the Class
Builder.

 To create an object using the menu bar

From the Object menu, choose New.
Except for classes, a specific node needs not to be selected.
For classes, a library node or the "Classes" group node has to be selected.

 To create a program editor object using accelerator keys

Use CTRL-N .

Copying or Moving Objects - Rules

13Copyright © Software AG 2002

Object OperationsUsing Objects and Shared Resources

Using Drag and Drop / Cut, Copy and Paste

With these operations, Natural Studio provides a powerful technique for the operations Copy and Move. It is
possible to use these operations for nearly all of the available nodes in the library workspace and the various list
views.

For example, you can copy all programs of a library by applying the operation on the "Programs" node in the
"library workspace"
logical view or you can move all generated programs of a library by applying the operation on the "Gp" node in
the "library workspace" file view.

Two important rules have to be taken into account when these operations are used.

The target node of a copy/move operation will only accept the objects of the selected source node
when actually ALL objects can be copied/moved to the target node.
Imagine a library is opened in a flat list view and the "Copy" operation is applied on a couple of selected
objects. The "Paste" operation on the "Src" Node in the file view is not allowed (indicated by the greyed
"Paste") when the object list contains any Natural generated program since the target only accepts Natural
source files.

A group node can only be copied to a library, it cannot be copied into another group node.
For example, it is not possible to copy the "Programs" node of a library into the "Programs" node of another
library, but it is possible to copy the "Programs" node into the "Library" node itself.

Valid Source Nodes

Regarding the previously described rules, the following nodes can be selected to act as a source for Copy or
Move operations:

All group nodes in the logical view ("Programs", "Subprograms", ...).
All subdirectory nodes in the file view ("Gp", "Src").
All objects in any view.
Libraries.

Valid Target Nodes

Regarding the previously described rules the following nodes can be selected to act as a target for Copy or Move
operations:

All group nodes in the logical view ("Programs", "Subprograms", ...).
All subdirectory nodes in the file view ("Gp", "Src").
All objects in any view.
The library nodes in any view.

Copyright © Software AG 200214

Using Objects and Shared ResourcesCopying or Moving Objects - Rules

Copying an Object

 To copy an object using the context menu

1. Select a source node.
2. Open the context menu and choose Copy.
3. Select a target node, open the context menu and choose Paste.

 To copy an object using accelerator keys

1. Select a source node and press CTRL-C .
2. Then select a target node and press CTRL-V .

 To copy an object using left mouse button drag & drop

1. Select the source node with the left mouse button and drag it to the target node.
2. Before releasing the mouse button, press CTRL .
3. Apply a drop of the source node by releasing the left mouse button.

 To copy an object using right mouse button drag & drop

1. Select the source node with the right mouse button and drag it to the target node.
After the right mouse button has been released, a context menu pops up.

2. Choose Copy.

Deleting Objects

It is, for example, possible to delete all Natural objects of type Copycode of a library by deleting the
"Copycodes" node of a library in the "library workspace" Logical View or delete all generated programs by
deleting the "Gp" node of a library in the "library workspace" File View.

 To delete objects

Select the object and press DEL .
Or choose Delete from the context menu.
Or choose Delete from the Object menu.

Exporting Objects

Applying the copy and move operations described in the section Copying or Moving Objects, it is also possible
to export Natural objects from the Natural environment to the Windows Explorer using Drag & Drop or Cut,
Copy and Paste.

This operation can be done for any node except the system file nodes in general ("user libraries", "system
libraries").

When the "Src" or "Gp" node of a library in the "library workspace" File View is exported, the whole
directory is copied/moved.
When a logical group node (e.g. the "Programs" node) of a library in the "library workspace" Logical View
is exported, all the individual files of the selected type ("Program"), that means, all files with the extension
".NGP" (Natural Generated Program) and ".NSP" (Natural Source Program) will be copied/moved.
When a Natural object node (e.g an object of type Dialog named "MYDLG") of a library in the "library
workspace" Flat View is exported, the corresponding files will be copied or moved (MYDLG.NS3 if the
source is available, MYDLG.NG3 if the corresponding generated program is available).

15Copyright © Software AG 2002

Copying an ObjectUsing Objects and Shared Resources

Importing Objects

Applying the described copy or move operations in the section Copying or Moving Objects, it is also possible to
import files from the Windows Explorer to the Natural environment using Drag & Drop or Cut, Copy and Paste.

If a complete directory is being imported, only objects with a file extension valid to Natural (e.g ".NSP",
"NG3..." will be accepted, subdirectories will be ignored.
If multiple directories are being imported, the same rule for importing a single directory applies.
If multiple files are being imported, all files with an invalid file extension are ignored.

Note:
Before the import is started, it is important to set the proper mode (structured mode or reporting mode) in which
the Natural objects to be imported were developed, otherwise some of them might not be compiled. This can be
done using the command Globals SM=ON/OFF .

If an object is imported and the object name is unknown to Natural and exists in the library, a container name
will be generated with the object name identical plus a running index.

Moving Object

 To move an object using the context menu

1. Select a source node and, from the context menu, choose Cut.
2. Then select a target node and, from the context menu, choose Paste.

 To move an object using accelerator keys

1. Select a source node and press CTRL-X .
2. Then select a target node and press CTRL-V .

 To move an object using left mouse button drag & drop

1. Select the source node with the left mouse button and drag it to the target node.
2. Apply a drop by releasing the left mouse button.

 To move an object using right mouse button drag & drop

1. Select the source node with the right mouse button, drag it to the target node and release the right mouse
button.

2. From the resulting context menu, choose Move Here to accomplish the drop.
After the operation is complete, the source node is deleted from the environment.

Copyright © Software AG 200216

Using Objects and Shared ResourcesImporting Objects

Listing Objects

The LIST command is used to display the source code of objects. When an object is displayed using the LIST
command, its content can be copied but not modified.

 To list an object

Select the object and choose the List command from the context menu.
Or click the List button in the object tool bar.

Printing Objects

You can print the source listing of an object. A dialog box is displayed in which you can select the number of
copies you want and modify printer defaults. To modify your printer defaults, choose Print Setup.

 To print an object

Select the object and, from the context menu, choose Print .
Or click the Print button in the Object tool bar.
Or choose Print from the Object menu.

Printing an Open Object

 To print an object that is open on your desktop and active

1. Click the Print tool bar button.
2. In the "Copies" text box, enter the number of copies you want to print.

In the "Properties" dialog box, you can specify various page setup and advanced printer settings such as those
applicable on the Windows Explorer. If you mark the Print to File option, the document is "printed" to a file
whose location will be the current directory, unless you specify a specific directory.

Renaming an Object

Renaming of objects can be accomplished by in-place-editing. Only one object can be renamed at a time. If
several nodes in a list view are selected and a Rename is applied from the context menu, the operation is
performed for the node currently having the focus.

 To start in-place-editing

1. Select the node.
2. Press the right mouse button and, from the resulting context menu, choose Rename.

Or press F2.
Or click on the selected node with the left mouse button.
Or press ESC to abort the rename process.

 To rename an object from the Object menu

1. Select the object and, from the menu bars’s Object submenu, choose Rename.
2. In the object’s name field, enter the new name.
3. Press ENTER to finish the in-place-editing process.

Or click with any mouse button on a different position.
Or press ESC to abort the rename process.

17Copyright © Software AG 2002

Listing ObjectsUsing Objects and Shared Resources

Object Retrieval

With the "Find Objects" dialog, it is possible to find Natural objects and the specified containing text. It can be
applied on any node in Natural Studio.

 To start the "Find Objects" dialog

Open menu Library - Find Objects in the Menu bar.
Or open a context menu for any node in the library workspace.
Or open a context menu for any node in an active list view

The "Find Objects" dialog comprises the "Location" sheet.

"Location" Sheet

With the "Location" sheet, the following settings can be applied to find Natural objects:

Names
Names of the objects to be found. It is possible to specify multiple names
separated with a semicolon. Additionally wildcards can be used.

Libraries
The libraries in which to search for objects; it is possible to specify
multiple names separated with a semicolon.

System
File

The systemfile to be used for the search.

Types
The types of Natural objects to be included in the search; open the "Types" dialog to select the
types.

Source If this box is checked, a search only for Natural sources is to be performed.

Cataloged If this box is checked, a search only for Natural generated programs is to be performed.

In the above "Location" sheet, a search for any object is started in the "system" library of the "user libraries"
system file. Only Source objects are to be included in the search.

Note:
If both the "Source" and the "Cataloged" check boxes are checked, both the source and the generated program of
the object must exist in order for the object to be found.

Copyright © Software AG 200218

Using Objects and Shared ResourcesObject Retrieval

"Contents" Sheet

With the "Contents" sheet, it is possible to scan the objects requested in the "Location" sheet for text including
an optional replacement of text.

Containing text The text to be searched for.

Whole words If this box is checked, only whole words are taken into account.

Case sensitive If this box is checked, case sensitivity of the text is taken into account.

Object names only
If this box is checked the object where the text is found will only be
displayed once in the result list.

Replace with The text to replace the found text with.

Delete value
If this box is checked, the found text will be deleted.
This button is disabled when a "replace" text is specified.

Confirm replace If this box is checked, a confirmation dialog is displayed for replacing the text.

In the above "Contents" sheet the containing text "test" is being searched. If multiple occurences are found in an
object, the result list displays the object only once with the first occurrence displayed.

"Advanced" Sheet

With the "Advanced" sheet it is possible to specify additional criteria for finding objects.

User ID If specified, only objects with a matching user ID will be found.

All files If this radio button is set, a search in all specified files takes place.

Identical source and catalog dates
If this radio button is set, only objects where the catalog
and the source date match are found.

With date between
If this radio button is set, only objects where the last modification date
is located between the specified range are found.

19Copyright © Software AG 2002

Object RetrievalUsing Objects and Shared Resources

In the above "Advanced" sheet, only objects which were created with the user ID "USER1" are found.
Additionally, the search is only successful when the last modification date of the object’s source and generated
program match.

Saving an Object

The SAVE command is used to store the source object in the active editor window. The window is not closed
afterwards. If no library name is specified in the SAVE command, the object is saved to the library from which it
was opened or created, which is not necessarily the active library (the library displayed in the status line).

 To save an object:

From the Object menu, choose Save.
Or click the Save toolbar button.
Or enter the SAVE command at the command line.

The source of the object in the active window is saved to the library displayed in the status line.

Saving an Object with Another Name

This function creates a new object by copying the current contents of the editor to a new object and closing the
original object. If no modifications have been made to the object since it was last saved, the function operates
like a simple copy. If, however, modifications have been made since the last save, the new object contains the
modifications and the old object is closed without saving the changes.

 To save an object to another name:

1. From the Object menu, choose Save As.
Or click the Save As toolbar button.
A dialog is displayed where you can specify a new object name, library, and type.

2. Choose OK .

Stowing an Object

The STOW command stores an object in both source and object module form. First the source object is saved,
then a syntax-check is performed to determine whether the object can be compiled. If no syntax errors are found,
the object is compiled and the resulting object module is stored. The window is not closed afterwards. If no
library name is specified in the STOW command, the object is stowed to the library from which it was opened or
created, which is not necessarily the active library (the library displayed in the status line).

Copyright © Software AG 200220

Using Objects and Shared ResourcesSaving an Object

 To stow an object:

1. In the "Objects" window, select the object.
Or open the object.

2. From the Object menu, choose Stow.
Or click the Stow toolbar button.
Or enter the STOW command at the command line.

The object code of the object in the active window is stowed to the library displayed in the status line.

Shared Resources
A shared resource is any non Natural object such as a bitmap or a help file and is always associated with a
specific library.

Natural Studio provides the same operations on shared resources as those applicable on the Windows Explorer.
As with Natural objects, new shared resources can be created inside the Studio, they can be exported or
imported, deleted, renamed, copied or moved. Since they are part of a library, they are also included in the
library search order defined by the STEPLIB assignments.

For more information on resources, see the Programming Guide - Object Types - Using Non-Natural Files -
Resource and User’s Guide - Dialog Editor - ActiveX Control Property Pages.

21Copyright © Software AG 2002

Shared ResourcesUsing Objects and Shared Resources

Using Natural Libraries
A library in Natural terms is the container for Natural objects. A Natural application can access objects in
multiple libraries depending on how the environment is set up.

The following topics are covered below:

Logon to a Library
Library Types
Library Naming Conventions
Library Commands
Library Operations
Library Limit
Example Library for New Features

See also:

*STEPLIB (for information on the STEPLIB concept)
Defining Your Own Logon Library

Logon to a Library
In order to work with objects in a Natural library or to start an application inside a specific library, a Logon to
this library must first be performed (see also the STEPLIB concept).

Automatic Logon to a Library

As of Natural 5.1.1, an automatic logon is performed any time a different library is selected or an object inside a
different library is selected.

Manual Logon to a Library

Apart from the implicitly performed mechanism, it is still possible to perform a manual logon with the LOGON
command in the Command Line.

Generally, you can change libraries anywhere in Natural by entering the following system command in the
command line:

LOGON library-ID

where library-ID is the ID (name) of the library you want to access.

Library Types
Three types of libraries are available.

Copyright © Software AG 200222

Using Natural LibrariesUsing Natural Libraries

System Library The system libraries are reserved for Software AG purposes only and are subject to change
without notice. The currently available system libraries are also known as the FNAT
systemfile which is version-dependent.
Important: Do not put any application-specific data in this library.

Example of a system library: The library "SYSERR" represents a system application to
maintain error messages. A system library is always named with the "SYS" prefix in the
library name.

User Library Used to develop the application. The currently available user libraries are also known as the
FUSER systemfile.

It contains all the objects of an application which are specific to this application. A user
library is always named with the prefix not equal to "SYS" in the library name.

Inactive Library A library which cannot be accessed by an application.

For using an inactive library, the status must be changed from inactive to active, that means
the correspondig inactive systemfile must become an active one (either FUSER or FNAT).
For more information, refer to FUSER, FNAT and System Files in the Natural Operations
documentation.

Inactive libraries can be used for the Object Operations and Library Operations only.

23Copyright © Software AG 2002

Library TypesUsing Natural Libraries

Library Naming Conventions
The name of a Natural library can be 1 to 8 characters long. It must start with an upper-case alphabetical
character and can consist of the following characters:

Character Explanation

A- Z uppe case alphabetical characters

0 - 9 numeric characters

- hyphen

_ underline

Library Commands
The CATALL command is used to catalog all objects in the current library. For a full description, see the
CATALL command.

Library Operations
Creating a New Library
Copying or Moving a Library
Deleting a Library
Renaming a Library

The library operations like copy, move, rename or delete can be applied inside the library workspace and inside
any open systemfile listview.

Creating a New Library

A new library can only be created in a systemfile (FNAT or FUSER) located inside the Local Environment and
only one library can be created at a time.

In addition, the following restrictions exist:

When a new library is to be created in the "user libraries", the library name must not start with "SYS".
When a new library is to be created in the "system libraries", the library name must start with "SYS".
Furthermore, a new library named "SYSTEM" must not be created.

 To create a new library

1. Select the corresponding systemfile node (e.g. "user libraries" in the library workspace logical view).
2. From the node’s context menu, choose New.

With this command, an in-place-editing process is started.
Natural creates a default name sorted into the existing library list which can be changed to any name
conforming to the library naming conventions.

3. To finish the in-place editing, press ESC or ENTER.
Or click with the mouse button on a different location.

Copyright © Software AG 200224

Using Natural LibrariesLibrary Naming Conventions

The new library is inserted sorted into all library views.

Copying or Moving a Library

 To copy or move a library

1. Select the corresponding library node in the library workspace.
Or open the Local Environment or Remote Environment list view.
The target node of the copy or the move of a library can be any systemfile node (FNAT, FUSER or an
inactive systemfile) or even any other library node. In the latter case all objects of the source library are
copied.

2. Copy a library to the "user libraries" (FUSER) or the "system libraries" (FNAT) systemfile.

When a library is copied to the "user libraries" system file of the active environment, the new library must
conform to the naming conventions for user libraries (FUSER), that means the library must not start with "SYS".
Therefore, a dialog is displayed where the default library name provided ("USRLIB") can be overwritten.

The same handling applies to the system file FNAT where the library name must start with "SYS". In this case,
the dialog mentioned offers the default name "SYSLIB".

In all other situations, for example, when copying a library from FNAT to an inactive system file, the name of
the source library is taken as the target library name.

Deleting a Library

If you are working in a multiple-user environment, you should only delete a Natural library if you have exclusive
access to the library involved.

 To delete a library

1. From the Library menu, choose Delete.
The "Delete a Library" dialog box is displayed.

2. From the "Library" drop-down list box, select the library to be deleted.
Deselect the Confirm on Delete toggle button to suppress deletion confirmation messages.
If a confirmation message is desired, leave the toggle button selected.
Choose OK or press ENTER.
After confirmation, the library is deleted.
Or select the library and press the DEL key.
Or select the Delete item from the context menu.
Or select the Delete item from the menu bar.

Renaming a Library

Renaming of a library is done with in-place-editing. Only one library can be renamed at a time.

If several libraries in a list view are selected and the Rename item is applied, the operation is performed for the
library node currently having the focus.

The name of a user library (FUSER) must not start with "SYS", whereas a system library has to start with
"SYS". The library named "SYSTEM" cannot be renamed.

 To start in place editing

1. Select the node.
2. Open the context menu and apply the Rename item.

Or press F2.

25Copyright © Software AG 2002

Copying or Moving a LibraryUsing Natural Libraries

Or click on the selected node with the left mouse button.
3. Enter the new library name and press ENTER to confirm (or ESC to cancel).

The in-place-editing process is finished.

Alternative method of doing the rename:

1. Select the item.
2. Choose Rename from the menu bar’s Object submenu.
3. Enter the new name.
4. Press ENTER to confirm (or ESC to cancel).

Or click with any mouse button on a different position.
The in-place-editing process is finished.

Library Limit
The maximum number of Natural objects that can be contained in a Natural library is 30000.

Example Library for New Features
The library SYSEXV contains several example programs which illustrate some of the new features of Natural
version 5.1. and the former version 4.1.

 To access the example programs

1. Log on to library SYSEXV and open the folder "Dialog".
2. Execute the dialog VERSION.

A dialog is displayed from which you can select the respective version and its example programs.

Copyright © Software AG 200226

Using Natural LibrariesLibrary Limit

Using Workspace Options
The following topics are covered below:

Setting Workspace Options
Display Success Messages
Display Delete Messages
Display Replace Messages
Exit Prompt
Show Full Cat All Result List
Perform Automatic Refresh
Enable Plug-ins
Terminal Emulation

Setting Workspace Options
You may want to prevent certain messages from appearing which are generally used to confirm that a particular
action has been or will be carried out.

 To display the workspace options

Choose Tools > Options from the main menu.
The workspace options described below appear in a dialog.

 To enble or disable a workspace option

Check or uncheck the corresponding option.

Display Success Messages
These messages appear in a message box and confirm that a command has been performed successfully.

Example: "Save was successful".

Display Delete Messages
These messages appear in a message box and warn you that you are about to do something that you might later
regret.

Example: "Do you wish to delete the selected objects?"

Display Replace Messages
These messages appear in a message box when an object is intended to be copied over an already existing one.

Example: "Are you sure you want to replace Program ’SAMPLE’ in library LIB ?"

27Copyright © Software AG 2002

Using Workspace OptionsUsing Workspace Options

Exit Prompt
This prompt appears in a message box and warns you that you are about to leave an editor or Natural altogether.

Example: "This will end your Natural session".

Show Full Cat All Result List
If this option is checked, the result list will display all objects processed during Cat All, regardless if the "Cat an
Object" returns an error or not.

Perform Automatic Refresh
If this option is checked, the workspace will be automatically refreshed.

If this option is unchecked, the user has to do the Refresh manually (using the "Refresh" command).

Note:
You can also uncheck this option to improve the performance especially when working remotely or working
with huge libraries.

Enable Plug-ins
If this option is checked, the Plug-in Manager and all other plug-ins that are marked for automatic activation are
activated when Natural Studio is started.

If this option is unchecked, neither the Plug-in Manager nor any other plug-in is activated when Natural Studio is
started.

Note:
This option cannot be checked if the profile parameter USEREP is set to ON.

Terminal Emulation
The terminal emulation is used for remote development only. It shows the output of, for example, a report that is
executed remotely on a mainframe. For details, e.g. on how to change the font and/or the character set used, see
Terminal Emulation in the document Remote Development.

Copyright © Software AG 200228

Using Workspace OptionsExit Prompt

Using Natural Output Window Options
The Natural output window is the window displayed whenever a Natural program writes output to the screen.

The following topics are covered below:

Output Window Features
Customizing the Mininimize Icon
Viewing/Modifying Output Window Profile Settings
Output Window General Profile
Output Window Color Profile
Output Window Font Profile

See also:

Natural Output Window Information (in the Operations documentation)
Output Window Features
Output Window Profiling
Additional Information on Font

Output Window Features
The Natural output window provides the following features:

It can be sized and moved.
If its size is less than the Natural output page, scroll bars appear.
PF keys defined in a Natural program are converted into push buttons.
You can use either the push buttons or the keyboard PF keys.
Clipboard functionality is available.
Information from Natural output can be cut or copied to the clipboard, and information from the clipboard
can be pasted into input fields of the output window.
Windows created using the Define Window statement are placed into the output window. They are
moveable, sizeable and scrollable child windows of the output window.
The cursor can be positioned using the mouse.
Double-clicking the left mouse button simulates the ENTER key.
The system variables *CURSOR, *CURS-COL and *CURS-LINE will be set to the current mouse position.

Customizing the Mininimize Icon
Whenever the Natural output window is minimized, an icon is displayed at the bottom of the screen.

 To customize this icon to your needs

Produce an iconfile (*.ico).
The iconfile is selected first in the logon libraries RES subdirectory, then in the RES subdirectory of each
STEPLIB and then in the directory assigned to the environment variable NATGUI_BMP.
To use the icon file, issue the statement: SET CONTROL ’I= iconfile .ICO’

29Copyright © Software AG 2002

Using Natural Output Window OptionsUsing Natural Output Window Options

Viewing/Modifying Output Window Profile Settings
 To display the output window options

From the Tools menu, choose Options... > Output Window .
The "Natural Output Window Profile" window appears with the profile options explained below.

 To modify the output window profile settings

Check or uncheck the corresponding option.

Output Window General Profile
Activate report page buffer
Display input fields with frame
Display PF-key buttons with number
Display more prompt
Disable ESC key
Disable help menu
Fixed fonts only

In addition to these general profile options, the push-buttons Colors and Fonts are available.

Activate report page buffer

Activates buffering, which accommodates approximately 250 lines of Natural output. Input empties the report
page buffer.

Display input fields with frame

Displays all input fields with a border (frame).

Display PF-key buttons with number

If selected, the PF-key button contains the number of the associated PF key; the name of the PF key is displayed
below the "PF-key" button.
If not selected, the PF-key button contains the name of the PF key, but the number is not displayed.

Display more prompt

Activates the MORE prompt for output generated by the Natural statements DISPLAY, WRITE or PRINT.

Disable ESC key

Defeats the function the ESC key. When this option is checked, the end user is not able to use ESC to quit the
current Natural program.

Disable help menu

If selected, the Natural output window no longer displays a "Help" menu entry. If you do not define any other
menu entries, the Natural output window no longer displays a menu bar.

Copyright © Software AG 200230

Using Natural Output Window OptionsViewing/Modifying Output Window Profile Settings

Fixed fonts only

Restricts the "Font selection" dialog to the use of fixed character width fonts only, that is, this option inhibits the
use of proportional fonts.

Output Window Color Profile
 To invoke the "Color Profiling" dialog box

Choose the Colors button.
The "Color Profiling" dialog box appears.

 To alter the colors to be used for all Natural output text

Choose the desired color from the list box.

 To reset the chosen color scheme

Click on Defaults.
This will reset your choice to the default color scheme (Normal).

Output Window Font Profile
Invoking the Front Profile Dialog
Accepting Changes Made to the Profile Settings

Invoking the Front Profile Dialog

 To invoke the "Font profile" dialog box

Choose the Fonts button.
The "Font profile" dialog box appears.

 To select the font to be used for all Natural output text in the output window

Choose the desired font name, style, and size in the respective list box.

Note:
If you want to use proportional fonts, make sure that the option "Fixed fonts only" has not been marked.

Accepting Changes made to the Profile Settings

If you want to accept the changes you have made to your output window profile setting, select either OK if you
want the changes to be valid for the duration of the Natural session, or "Save" if you want them to be valid also
for future Natural sessions.

31Copyright © Software AG 2002

Output Window Color ProfileUsing Natural Output Window Options

Using Session Parameters
When you start Natural, the Natural parameter file is read to determine the settings of several parameters which
customize the Natural installation to your specific environment and requirements. Some of these parameters can
be updated after the Natural session is up and running.

Note:
These modifications are only valid for the current session. When you exit Natural, these settings are discarded
and the settings in the Natural parameter module are used for the next Natural session.

This section describes parameters that can be dynamically updated, that is, updated during a running session. For
a full description of all available session parameters, follow the corresponding parameter links or see the Session
Parameters overview page in the Natural Reference documentation.

The following topics are covered below:

Setting Session Parameters
Session Parameters Grouped by Function

Report Parameters
Limit Settings
Character Assignments
Compiler Options
Field Appearance
Error Handling
Data Representation

Setting Session Parameters
 To set global parameters dynamically

From the Tools menu, select Session Parameters.
(To set a parameter to ON check the corresponding box.)
Or enter the GLOBALS command in the command line.
Or use the SET GLOBALS statement in a Natural program.
Or set the session parameter(s) at the statement and/or element level with certain Natural statements
(FORMAT, DISPLAY, INPUT, REINPUT, WRITE, PRINT).

Session Parameters Grouped by Function
Report Parameters
Limit Settings
Character Assignments
Compiler Options
Field Appearance
Error Handling
Data Representation

Copyright © Software AG 200232

Using Session ParametersUsing Session Parameters

Report Parameters

Parameter Function

EJ Page eject

LS Line size

PS Page size

SF Spacing factor

IM Default terminal mode

Limit Settings

Parameter Function

LE Limit error processing

LT Processing loop limit

33Copyright © Software AG 2002

Report ParametersUsing Session Parameters

Character Assignments

Parameter Function

CF Terminal command character

DC Decimal-point notation character

IA Input ASSIGN character

ID INPUT statement delimiter character

Note:
All character assignments must be mutually exclusive.

Copyright © Software AG 200234

Using Session ParametersCharacter Assignments

Compiler Options

Parameter Function

DU Memory dump generation

FS Length/format specification

SM Structured mode

SYMGEN Generate symbol tables

35Copyright © Software AG 2002

Compiler OptionsUsing Session Parameters

Field Appearance

Parameter Function

ZP Zero printing

PM Print mode

ML Msg line position

FCDP Filler characters proteced

OPF Overwriting protected

Copyright © Software AG 200236

Using Session ParametersField Appearance

Error Handling

Parameter Function

SA Terminal alarm feature

ZD Zero division

REINP Automatic REINPUT

Data Representation

Parameter Function

DFOUT Date format output

DFSTACK Date format stack

DFTITLE Date format report title

37Copyright © Software AG 2002

Error HandlingUsing Session Parameters

Accessing Tools
The following topics are covered below:

Invoking Development Tools
Development Tools Available

Invoking Development Tools
From the Natural environment, you can access applications that support the software development process.

 To access the development tools

From the menu bar, choose Tools > Development Tools.
A list of tools available is displayed.

Development Tools Available
Provided that the corresponding options were chosen during the installation procedure, the following software
engineering tools are available from the Tools entry of the menu bar:

Application Shell

Invokes Natural Frame Gallery administration. For more information, see the Natural Application Shell
documentation.

Component Browser

A tool for browsing existing ActiveX controls. For more information, see the Component Browser.

Debugger

Start the Natural Debugger to find errors on source code level in a Natural application. For more information, see
the Debugger documentation.

Error Messages

The Natural utility SYSERR is used for the creation and maintenance of error messages. These error messages
can then be used in a Natural application.

You can write your own application-specific messages.
You can also modify existing Natural system messages; however, this is not recommended, because these
modifications will be lost when a new release of Natural is installed.

For information about creating an error text file, see the Natural SYSERR Utility documentation.

Frame Gallery

Generates an application frame in the Natural Frame Gallery. For more information, see the Natural Frame
Gallery documentation.

Copyright © Software AG 200238

Accessing ToolsAccessing Tools

Natural Reporter

A simple, but powerful tool for generating virtually any type of report directly from a Natural program. For more
information, see the Natural Reporter documentation from the HTML Online Help.

Object Handler

The Object Handler is designed to process Natural and non-Natural objects for distribution in Natural
environments. This is done by unloading the objects in the source environment to work files and loading them
from work files in the target environment. For more information, see the SYSOBJH Utility.

Unlock Objects

Used for remote development only. See Object Locking in the section Remote Development.

User Exits

Displays a list of the existing user exits.

39Copyright © Software AG 2002

Natural ReporterAccessing Tools

Arranging Your Natural Environment
The following topics are covered below:

Displaying Your Natural Version
Arranging Your Natural Environment

Displaying the Natural Version of Your Environment
If you have different versions of Natural for Windows installed on your desktop, it is helpful to get information
about the product version of the Natural environment you are currently using.

 To display the version of Natural you are currently running

From the Help menu, choose About Natural Studio.
The version number and copyright year for the Natural version is displayed.

Working with Dockable/Floatable and MDI Windows
There are two ways to change the position, location or visibility of items in the Natural environment depending
on which type of windows is currently being used:

Dockable and Floatable Windows
MDI Windows

Dockable and Floatable Windows

The following windows can be made dockable or floatable:

Command Line
All Toolbars and Menus
Library Workspace
Application Workspace
Results Window

For details on these windows, follow the links or refer to the corresponding descriptions in the Natural Studio
documentation.

 To switch between a dockable and floatable window

1. Position the left mouse on the double bar of the window, keep the button pressed and drag the window to a
different position. During this process the window is changing to floatable. When the mouse button is
released, the windows docks to the new border.

2. Double click on the double bar toggles the status from dockable to floatable and vice versa.

 To hide a dockable or floatable window

To hide a dockable or floatable window, click on the cross in the upper right corner of the window.
Or use the View menu of the main menu bar.
Or use the environment context menu.

Copyright © Software AG 200240

Arranging Your Natural EnvironmentArranging Your Natural Environment

 To show a dockable or floatable window

Use the main menu bar’s View menu.
Or use the environment context menu.

MDI Windows

The following windows used in the Natural environment follow the MDI concept:

List Views
Editors

MDI windows can be created from the library workspace and will be maintained with the Window menu.

The Window menu allows you to arrange or access windows or icons on your desktop. The following items are
on the menu:

Menu Item Function

Next (CTRL+TAB) Activates the next inactive MDI window.

Previous (SHIFT+CTRL+TAB) Activates the previous inactive MDI window.

Close all Close all MDI windows.

Cascade Arranges the windows as overlapping tiles.

Tile horizontally Arranges the windows as horizontal, non overlapping tiles.

Tile vertically Arranges the windows as vertical, non overlapping tiles.

Arrange icons Arrange the icons of minimized windows.

In addition, a list of active MDI windows which can be selected for activation.

The windows menu also contains a list of all open MDI windows. The currently active window is marked with a
checkbox.

41Copyright © Software AG 2002

MDI WindowsArranging Your Natural Environment

Using Online Help
Online help employs all of the information search and retrieval methods available in typical Windows
applications.

In most cases, help is context sensitive, leading you directly to the information you seek.
It is also possible, however, to search by topic or index entry.

For more information about using Windows online help, see the Microsoft Windows documentation.

The following topics are covered below:

Starting Online Help
Displaying the System Command List
Displaying Error Message Texts

Starting Online Help
 To access the online help overview page

1. Press F1.
2. Choose Contents from the Help menu.

 To access the context-sensitive online help

Choose the Help command button you will find in some dialog boxes.

Displaying the System Command List
 To display an overview of all Natural system commands available

1. From the Help menu, choose System Commands.
The System Command List is displayed
(described in the Natural Reference documentation).

2. Choose the command from the selection box.

Displaying Error Message Texts
 To display a message text for a specific error number

1. From the Help menu, choose Natural Errors .
The "Help On Errors" dialog box appears.

2. In the "Error Type" group frame, select "System" for Natural system error messages or "User" for
user-defined error messages.

3. In the "Error Number" text box, enter the error number.
4. Choose OK .

Long and short explanations for the error message are displayed.

Copyright © Software AG 200242

Using Online HelpUsing Online Help

Natural Studio - Introduction
The following topics are covered:

Natural Studio - Features and Components

Library Workspace

Multiple Document Interface Area

Toolbars and Menus

Results Window

Results Interface

Command Line

Status Bar

Context Menus

Accelerators

Commands

Manual Refresh

Customizing

See also:

Natural Studio - Fundamentals

43Copyright © Software AG 2002

Natural Studio - IntroductionNatural Studio - Introduction

Natural Studio - Features and Components
Natural Studio - Features
Natural Studio - Main Components

Natural Studio - Features
Natural Studio can be used to create mission-critical enterprise applications quickly and easily. These can be
traditional client-server, component-based or web-enabled applications.

Natural applications are portable, scalable and interoperable across multiple computing platforms ranging from
the mainframe to the desktop.

The development environment consists of the following main components:

the Natural programming language and runtime environment, used to access and modify database contents,
generate reports, build applications with a graphical user interface, perform calculations, process tables and
so on.
powerful editors to create screen layouts, data areas, dialogs or programs.
a report writer for creating attractive reports, combining your data, text, charts, and pictures.
a Component Browser for simplifying the integration of Active X components.
a Web Interface.
an integrated Class Builder for creating classes.
a Debugger.
various other utilities helpful in application development and system administration, for example, a tool for
maintaining error messages.
a Plug-in Manager making the Natural Studio user interface extensible by plug-ins. Part of the Natural
Studio functionality itself is delivered in the form of plug-ins, for example, the XRef GUI Client which is
provided in a Natural Single Point of Development (SPoD) environment.
additional features, such as an application workspace, a terminal emulation window and an XRef GUI
Client, are available to enable Natural Studio to be used as a client for remote development in a Single Point
of Development (SPoD) scenario.

Copyright © Software AG 200244

Natural Studio - Features and ComponentsNatural Studio - Features and Components

When the Natural desktop appears for the first time, the library workspace will be displayed on the left side of
the development environment with the current logon library selected. When Natural is restarted, the toolbars and
windows are placed at the same positions as when Natural was left the last time.

Natural objects are structured in libraries: the default library will be SYSTEM unless a different one is specified
by the administrator.

The default library can be altered by setting the Natural profile parameter INIT-LIB in the Natural configuration
utility .

For more information, see the Natural Operations documentation.

Natural Studio provides various modern techniques for fast construction of Natural applications. These are:

Context menus for almost all situations.
Dockable windows and toolbars with tooltips.
Full drag&drop / cut&paste support for the file operations copy and move.
In-place editing for renaming objects or creating new objects.
Customization of the environment.

45Copyright © Software AG 2002

Natural Studio - FeaturesNatural Studio - Features and Components

Natural Studio - Main Components
Natural Studio consists of the following GUI components:

Library Workspace
Application Workspace
Multiple Document Interface Area
Toolbars and Menus
Results Window
Results Interface
Command Line
Status Bar

Copyright © Software AG 200246

Natural Studio - Features and ComponentsNatural Studio - Main Components

Library Workspace
The Library Workspace is used to administer all Natural system files in the current environment in a hierarchical
manner as a tree view. In Natural terms, a system file is a collection of Natural Libraries and a Natural library is
a collection of Natural Objects and Shared Resources.

The workspace is structured and can be displayed in three different views, the logical, the flat and the file view.
In addition, the Library Workspace is a dockable window which can be placed at a different position or also can
be made floatable or invisible.

From the Library Workspace, any node of the tree can be opened or new objects can be created into the Multiple
Document Interface Area.

The following topics are covered below:

Switching the Library/Application Workspace On or Off
Local Environment
Remote Environment
Logical View
Flat View
File View

See also: Application Workspace

Switching the Library/Application Workspace On or Off
 To switch the Library/Application Workspace on or off

Press ALT - 1 .
Or, from the menu bar, choose View and check Library Workspace and/or Application Workspace.
Or open the context menu on any toolbar, in the Multiple Document Interface Area or in the Natural frame
window
and check Library Workspace and/or Application Workspace..

Local Environment
The local environment is used to develop and run Natural applications for the local Windows environment.

It consists of the currently active user libraries (also known as the system file FUSER) and the currently active
system libraries (also known as the system file FNAT). All Natural commands (CAT, STOW, EXECUTE, etc.)
and all object operations (Move, Delete, etc.) are supported. See System Commands or Object Operations for
further information.

Remote Environment
With the introduction of Natural Single Point of Development (SPoD), you can map to a mainframe environment
in order to develop applications remotely with the benefits of the powerful graphical user interface. For more
information, refer to the Natural SPoD documentation.

47Copyright © Software AG 2002

Library WorkspaceLibrary Workspace

Logical View
The logical view displays the objects of libraries in a structured manner. For any Object Types available, a
corresponding group node is displayed. For objects of type subroutine, class and DDM, the long name will be
displayed. This is in contrast to the file names of the remaining object types such as programs or subprograms.

In addition, it is possible to create new or maintain existing classes using the Class Builder. For information on
the visual representation of objects, refer to Object Visualisation.

For more information on object types used in Natural, refer to Object Types.

Copyright © Software AG 200248

Library WorkspaceLogical View

Flat View
The flat view displays the objects of libraries without any grouping.

Note:
To determine what files are represented by an object, also refer to Object Visualisation.

49Copyright © Software AG 2002

Flat ViewLibrary Workspace

File View
The file view represents the structure of the Natural environment as available on the file system. A Natural
system file is displayed as the path to the "Src" and "Gp" subdirectory, for example:

D:\SAG\NAT\V511\FNAT

The "Src" directory contains all Natural sources and the "Gp" subdirectory contains all Natural generated
programs (Natural executables). The Natural objects are displayed with the corresponding file extensions (for
example, ".NGP" for Natural Generated Program or ".NSP" for Natural Source Program).

Note:
To determine what files are represented by an object, also refer to Object Visualisation.

Copyright © Software AG 200250

Library WorkspaceFile View

Multiple Document Interface Area
From the Library Workspace, any node of the tree can be opened or new objects can be created into the Multiple
Document Interface (MDI) area. The possible objects are editor objects and list view objects.

List View
Editors Available in MDI Area
MDI Window Navigation Accelerators

List View
For every node in the library workspace (except the object nodes which will be processed in the corresponding
object editor), a List View can be opened in order to display more detailed information on the selected node.

51Copyright © Software AG 2002

Multiple Document Interface AreaMultiple Document Interface Area

Opening a List View

 To open a List View

1. Select the node in the library workspace or in an already open List View.
2. Open the context menu and select the Open command.

Or open the Object menu in the menu bar and select the Open command.
Or use the accelerator key CTRL+O .
Or press ENTER.

List View Operations

A List View supports the following operations:

Repositioning the columns using header drag and drop.
D rag a header of a specific column and drop it onto a different header position. For example, drag the
"Extension" column of the "Generated Programs" List View and drag it to the beginning in order to position
this column as the first one;
Resizing the column width.
Sorting columns in ascending and descending order; sorting a single column or sorting multiple
columns.
It is, for example, possible to click on the "Extension" column header to sort the column in ascending
order and then hold the CTRL key down and click on the "Name" column twice to sort it in descending
order (inside the sort sequence of the column first sorted);
Multiple selection for mass operations
(in contrast to the library workspace, where only one node can be selected). To select multiple nodes, press
the SHIFT key (to select items consecutively) or press the CTRL key (to select individual items).
Changing the layout of the date and time output using the Natural profile parameter DTFORM .
For example, it is possible to change the representation from English to German.

Editors Available in MDI Area
The following Editors can be opened in the Multiple Document Interface Area:

Program Editor
Map Editor
Data Area Editor
DDM Editor
Dialog Editor

MDI Window Navigation Accelerators
The following MDI-specific accelerator keys can be used to navigate within the Natural environment.

CTRL-D to toggle between the command line and the active MDI window (editor or list view).
CTRL-W to toggle between the active MDI window and the library workspace.
CTRL-T to toggle between the active MDI window and the result view.

For navigation inside the open MDI windows (editors and list views), refer to MDI Windows.

Copyright © Software AG 200252

Multiple Document Interface AreaEditors Available in MDI Area

Toolbars and Menus
Introduction
Hiding a Toolbar
Positioning a Toolbar

For information on customizing a toolbar, refer to the following topics concerning the "Customize" dialog:

Creating a Toolbar
Editing a Toolbar
Adding User-Defined Commands to a Toolbar
Removing Commands from a Toolbar
Rearranging Commands in the Toolbar
Selecting a Toolbar
Removing a Toolbar

Introduction
The menu bar and toolbar offer the following features:

All major commands can be issued using the menu bar.
This is the bar displayed at the top of the Natural development environment. Like all available toolbars, the
menu bar is dockable and floatable and therefore can be placed in a different position.
The menus offered in the menu bar vary depending on the active window.
The selection of commands from the menu bar is performed just like all graphic-based applications.
Another way of issuing commands is using a context menu by clicking the right mouse button on the
corresponding node.
Toolbar buttons provide an alternative to menu commands.
Buttons are avilable for the most commonly used functions such as saving, checking, running, and stowing
objects. For example, to open a library, you can click the "Open selected object" toolbar button instead of
opening a menu and choosing a command.
Each toolbar button is self-documenting.
Just place the mouse pointer on the toolbar button, and read the text in the status line. Additionally a tool tip
is provided for the command (when the corresponding option is switched on in the "Customize" dialog).
The toolbar is context sensitive.
It displays only the buttons that apply to the active window. In general, each editor has its own toolbar.

The first time Natural is started, the default toolbars that are provided for each window are displayed. However,
new buttons can be added, existing ones can be removed or rearranged and even new toolbars can be created
using the "Customize" dialog.

53Copyright © Software AG 2002

Toolbars and MenusToolbars and Menus

Hiding a Toolbar
You can hide a toolbar when you are not using it.

 To hide your toolbar

1. Click with the right mouse button on any toolbar.
2. From the resulting context menu, select the toolbar to be hidden.

(If the check mark is not visible, the toolbar is hidden.)

Positioning a Toolbar
The toolbar is located by default at the top of your desktop just below the menu bar, but you can dock it by drag
and drop along any other edge of your desktop.

 To position your toolbar on the desktop

1. Select the toolbar to be repositioned at its far left.
2. Press and hold the left mouse button.
3. Using drag and drop, place the toolbar into position.

Copyright © Software AG 200254

Toolbars and MenusHiding a Toolbar

Results Window
Switching the Results Window On and Off
Using the Results Window

See also Results Interface.

Switching the Results Window On and Off
 To switch the result window on or off

Press ALT - 5 .
Or, in the menu bar’s View menu, check Results.
Or, in the environment context menu on any toolbar, on the Natural document interface area on the Natural
frame window, check Results.

Using the Results Window
Natural Studio provides a window displaying the results of the commands CAT ALL and FIND OBJECTS as
well as the user defined tabs created by the Results Interface.

As with the Library Workspace, this window is also dockable and floatable.
The results can be switched by pressing the corresponding Tab key.
For further processing, the same commands (except file operations like Copy or Delete) as in the library
workspace can be used (for example, execution of a found object).
As the window is a List View, the same operations for organizing the list as described in the List View are
available.

55Copyright © Software AG 2002

Results WindowResults Window

Results Interface
The following topics are covered:

Purpose of the Results Interface
Results Window Control Bar Access
Tab Handling
Image Handling
Context-Menu Handling
Command Handling
Column Handling
Row Handling
Data Handling
Selection Handling

See also Results Window.

Purpose of the Results Interface
The Results Interface enables programmers to display data within the results window. The results of CAT ALL
and FIND OBJECTS are not affected by the Results Interface.

The design and the usage of a tab can be determined via user exits. In general, a detailed view with columns and
lines is used.

Context menus can be created for each entry, so that after the user-defined tab is shown it can be used for further
processing.

This processing has to be defined within two programs.

1. in an update Command Handler before a context menu is shown;
2. in a Command Handler if an item is selected.

The user exits for the Results Interface are USR5001N - USR5016N and can be found in the library SYSEXT.

An example of the various functions is available in USR5001P with the command handler in USR5001A and
USR5001B.

Note:
Modifications of the pre-defined tabs (e.g. Find Objects and Cat All) are not possible with this interface.
The Results Window and the Results Interface can be accessed only from Natural Studio.

Results Window Control Bar Access
In this section, the Results Window Control Bar can be accessed.

User Exit Functionality

USR5001N
Turns Results Window on/off.
Checks visibility of the Results Window.

Copyright © Software AG 200256

Results InterfaceResults Interface

Tab Handling
In this section, the general layout of a tab can be defined.
A tab can contain all or one of the following:

Check Box
Full Row selection
Single Row selection
Images

A tab can be defined with the following attributes:

Layout of the view (Large / small icons, list or details view)
Several usages (Check boxes, images, grid lines, full or single row selection, view change)
Layout of the tab label (Text, bitmap or icon)

User Exit Functionality

USR5004N Add, replace and delete a tab.

USR5005N
Set and get active tab.
Set tab active and set the focus on this tab

Image Handling
In this section, bitmaps (*.bmp) and icons (*.ico) can be specified for a previously defined tab.

User Exit Functionality

USR5002N Add and delete bitmaps and icons for a specified tab.

Context-Menu Handling
In this section, user-defined context-menus can be specified.

User Exit Functionality

USR5003N Add, remove and delete context-menus of a tab.

USR5007N Set and get checked/enabled state of context-menu items.

The hierachy of the context-menu must be defined manually.

The following array components can be defined:

57Copyright © Software AG 2002

Tab HandlingResults Interface

Array
Component

Value Description

Type 1 to 4

1 - Context-Menu Handling
2 - Separator line
3 - Begin of submenu
4 - End of submenu

Command ID 1 to 255
Free selectable number to identify a certain item in a context menu
(used within the command handler).

Label
alpha-nummeric
text

Text for the context-menu items of type 1 and 3.
A text for the status bar can be separated with H’0’A.

Image Handle of image
Handle of a previously defined image (bitmap or icon).
The image will be placed before the text of the context-menu item.

Command Handling
A program can be assigned as an update command handler or as a command handler.
User defined data can be saved / restored in the internal work area of the command handlers.

For example: handles of tabs.

User Exit Functionality

USR5006N Define update command handler and command handler.

USR5016N Set and get data for the command handler work area.

Column Handling
In this section, the general layout of a column can be defined.
A column can contain all or one of the following:

Title
Width
Data position
Column sort

In addition, the default width and specified width of the column can be set up individually.

User Exit Functionality

USR5008N Add, insert and delete columns of a tab.

USR5010N Set and get default column width and width for specified columns.

USR5009N Count number of columns.

Row Handling
In this section, the rows with images and context menus can be defined.

Copyright © Software AG 200258

Results InterfaceCommand Handling

User Exit Functionality

USR5011N Add, insert and delete rows of a tab.

USR5009N Count number of rows.

Data Handling
In this section, user defined data can be written into defined columns/rows.
If check boxes have been defined for a tab, then they can be activated/deactivated for every row.

User Exit Functionality

USR5012N Set and get data into a tab.

USR5013N Set and get checked state of a row.

Selection Handling
In this section, rows can be individually selected.

User Exit Functionality

USR5014N
Set and get selected rows.
Count amount of selected rows.
Reset row selection.

USR5015N Set and get row of focus.

59Copyright © Software AG 2002

Data HandlingResults Interface

Command Line
The command line provides another way of using Natural System Commands. The following topics are covered
below:

Using the Command Line
Display or Hide the Command Line
Associate an Object with the Command Line

Using the Command Line
When Natural Studio is started for the first time, the command line is switched off, since in most cases a
command can be issued using the menu bar, a context menu or a toolbar command, thus making the command
line obsolete.

But one can still imagine some scenarios where applying commands with the command line is quite useful. This
is especially the case for commands which are not dependent on the context. An example of a context-sensitive
command could be the STOW command which always acts on the current selection in the library workspace or
an active List View. It is used to set global settings such as GLOBALS SYMGEN = ON (generation of symbolic
information for any object to be cataloged).

The command line offers the following features:

Direct commands
For users who are already quite familiar with the Natural system commands, it might be faster to issue
commands using the command line rather than selecting the command with a context menu or with a
toolbar button.
Command history mechanism
For faster command execution, the command line uses a command history mechanism in conjunction with
reselecting commands already entered. On the right side, the currently active library (the library where the
user is currently logged in) is displayed.
Dockable and floatable
As with the menu bar, the library workspace and the toolbars, the command line can be docked to any other
position or can be made floatable.

Display or Hide the Command Line
 To switch the command line on or off

Press ALT - 3
Or, from the menu bar, choose View and check Command Line.
Or open the context menu on any toolbar in the Multiple Document Interface Area.

Associate an Object with the Command Line
In some cases, it is not obvious on which selected object the command in the command line was applied since it
is possible that both in the Library Workspace and the List View some nodes are selected.

For such a scenario, the following rule applies:

Copyright © Software AG 200260

Command LineCommand Line

The command is always connected to the node which last had the focus.

61Copyright © Software AG 2002

Associate an Object with the Command LineCommand Line

Status Bar
Purpose of the Status Bar
Switching the Status Bar On or Off
Status Bar Option

Purpose of the Status Bar
The status bar at the bottom of the development environment displays information about the command currently
selected or on the progress of an operation currently being performed. Also, information on the currently active
list view is displayed.

Switching the Status Bar On or Off
 To switch the status bar on or off

Press ALT - 4 .
Or, from the menu bar, choose View and check Status Bar.
Or open the environment context menu on any toolbar, in the Natural document interface area or the Natural
frame window.

Status Bar Option
The status line at the bottom of your desktop displays the active command messages and the time and date.

 To hide the status bar

1. At any position in the main menu bar, press the right mouse button.
2. Click on the status bar to be hidden.

(If the check mark is not visible, the status bar is hidden.)

Copyright © Software AG 200262

Status BarStatus Bar

Context Menus
Natural Studio supplies Context Menus for all sorts of objects.

Context Menus can be activated with the right mouse button or with the WINDOWS application key for the
following windows/nodes:

any node in the Library Workspace.
any node in a List View.
any List View window when no node is selected.
the frame window, the multiple document interface area or any toolbar.
any active window.

63Copyright © Software AG 2002

Context MenusContext Menus

Accelerators
Many Natural commands are mapped to corresponding accelerator keys. The following topics are covered
below:

Accelerators Grouped by Categories
Generally Available Accelerators
Dialog Editor Accelerators
Program Editor Accelerators
Data Area Editor Accelerators

Alphabetical Overview of Accelerators

See also:

Changing Accelerator Key Assignments

Accelerators Grouped by Categories

Generally Available Accelerators

The following table shows the accelerators that are available in Windows Explorer, on a selected node in the
library workspace or in an active list view.

Accelerator Description

ALT-ENTER Display properties of Natural objects

CTRL-C Copies.

CTRL-O Opens a Natural object or a list view.

CTRL-P Prints an object.

CTRL-V Pastes.

CTRL-X Cuts.

DEL Deletes.

ENTER Opens or executes Natural object or opens a list view.

The following table shows the accelerators that are available anywhere inside Natural.

Copyright © Software AG 200264

AcceleratorsAccelerators

Accelerator Description

ALT-1 Toggles view of library workspace.

ALT-2 Toggles view of application workspace.

ALT-3 Toggles view of command line.

ALT-4 Toggles view of status bar.

ALT-5 Toggles view of result list.

ALT-F4 Exits the Natural session.

CTRL-D Toggles between the command line and the active MDI window.

CTRL-T Toggles between the result view and the active MDI window.

CTRL-TAB Makes next MDI window active.

CTRL-W Toggles between the library workspace and the active MDI window.

CTRL-SHIFT-TAB Makes previous MDI window active.

Dialog Editor Accelerators

The following table shows the accelerators that are available in the active dialog editor.

65Copyright © Software AG 2002

Dialog Editor AcceleratorsAccelerators

Accelerator Description

CTRL-A Selects all.

CTRL-E Checks an object.

CTRL-F Finds items.

CTRL-H Replaces items.

CTRL-P Prints an object.

CTRL-R Runs an object.

CTRL-S Saves an object.

CTRL-V Pastes.

CTRL-X Cuts.

CTRL-Y Performs a redo.

CTRL-Z Performs an indo.

CTRL-ALT-DOWN Aligns selected controls down.

CTRL-ALT-E Opens the dialog event handlers dialog.

CTRL-ALT-G Opens the global data area dialog.

CTRL-ALT-H Opens the help organizer dialog.

CTRL-ALT-I Opens the timers dialog.

CTRL-ALT-L Opens the local data area dialog.

CTRL-ALT-LEFT Aligns selected controls left.

CTRL-ALT-M Opens the menu dialog.

CTRL-ALT-O Opens the comment dialog.

CTRL-ALT-P Opens the parameter data area dialog.

CTRL-ALT-Q Displays control sequence numbers.

CTRL-ALT-RIGHT Aligns selected controls right.

CTRL-ALT-S Opens the inline subroutine dialog.

CTRL-ALT-T Opens the toolbar dialog.

CTRL-ALT-UP Aligns selected controls up.

CTRL-ALT-X Opens context menu dialog.

CTRL-SHIFT-D Deletes line.

CTRL-SHIFT-E Opens event handlers for selected control.

CTRL-SHIFT-F9 Aligns selected controls centered.

CTRL-SHIFT-K Delete to end of line.

F3 Repeats "Find items".

F9 Vertical center of selected controls.

SHIFT-F9 Horizontal center of selected controls.

Copyright © Software AG 200266

AcceleratorsDialog Editor Accelerators

Program Editor Accelerators

The following table shows the accelerators that are available in the active program editor.

Accelerator Description

CTRL-A Selects all.

CTRL-E Checks an object.

CTRL-F Finds items.

CTRL-G Goto.

CTRL-H Replaces items.

CTRL-P Prints an object.

CTRL-R Runs an object.

CTRL-S Saves an object.

CTRL-V Pastes.

CTRL-X Cuts.

CTRL-Y Performs a redo.

CTRL-Z Performs an indo.

CTRL-SHIFT-D Deletes line.

CTRL-SHIFT-K Delete to end of line.

CTRL-SHIFT-R Starts recording.

CTRL-SHIFT-S Stops recording.

CTRL-SHIFT-P Replays recording.

F3 Repeats "Find items".

F6 Toggles between split windows.

Data Area Editor Accelerators

The following table shows the accelerators that are available in the active data area editor.

67Copyright © Software AG 2002

Program Editor AcceleratorsAccelerators

Accelerator Description

CTRL-A Selects all.

CTRL-E Checks an object.

CTRL-F Finds items.

CTRL-H Replaces items.

CTRL-P Prints an object.

CTRL-R Runs an object.

CTRL-S Saves an object.

CTRL-V Pastes.

CTRL-X Cuts.

CTRL-Y Performs a redo.

CTRL-Z Performs an indo.

CTRL-SHIFT-D Deletes line.

CTRL-SHIFT-I Jumps to next level.

CTRL-SHIFT-J Jumps to previous level.

CTRL-SHIFT-K Delete to end of line.

F3 Repeats "Find items".

Alphabetical Overview of Accelerators
The following alphabetical list shows the default accelerator assignments inside Natural.

Accelerator Description Applicable in

ALT-1 Toggles view of library workspace. Anywhere inside Natural.

ALT-2 Toggles view of application workspace.Anywhere inside Natural.

ALT-3 Toggles view of command line. Anywhere inside Natural.

ALT-4 Toggles view of status bar. Anywhere inside Natural

ALT-5 Toggles view of result list. Anywhere inside Natural

ALT-ENTER Display properties of Natural objects
Selected node in library workspace or active
list view.

ALT-F4 Exits the Natural session. Anywhere inside Natural.

ALT-RIGHT Horizontal spacing. Active Dialog Editor

ALT-UP Vertical spacing. Active Dialog Editor

CTRL-A Selects all. Active editor.

CTRL-C Copies.
Windows explorer, selected node in library
workspace or in active list view.

Copyright © Software AG 200268

AcceleratorsAlphabetical Overview of Accelerators

Accelerator Description Applicable in

CTRL-D
Toggles between the command line and
the active MDI window.

Anywhere inside Natural.

CTRL-E Checks an object. Active editor.

CTRL-F Finds items. Active editor.

CTRL-F4
Closes the active MDI window (list view
or editor).

Active MDI Window.

CTRL-G Goto. Active Program Editor.

CTRL-H Replaces items. Active editor.

CTRL-N Creates a new Program. Active environment.

CTRL-O Opens a Natural object or a list view.
Selected Node in library workspace or active
list view.

CTRL-P Prints an object.
Active Editor, selected node in library
workspace or active list view.

CTRL-R Runs an object. Active editor.

CTRL-S Saves an object. Active editor.

CTRL-T
Toggles between the result view and the
active MDI window.

Anywhere inside Natural.

CTRL-TAB Makes next MDI window active. Anywhere inside Natural.

CTRL-V Pastes.
Windows explorer, selected node in library
workspace or in active list view.

CTRL-W
Toggles between the library workspace
and the active MDI window.

Anywhere inside Natural.

CTRL-X Cuts.
Windows explorer, selected node in library
workspace or in active list view.

CTRL-Y Performs a redo. Active editor.

CTRL-Z Performs an indo. Active editor.

CTRL-ALT-C Displays source code. Active Dialog Editor.

CTRL-ALT-DOWN Aligns selected controls down. Active Dialog Editor.

CTRL-ALT-E Opens the dialog event handlers dialog.Active Dialog Editor.

CTRL-ALT-G Opens the global data area dialog. Active Dialog Editor.

CTRL-ALT-H Opens the help organizer dialog. Active Dialog Editor.

CTRL-ALT-I Opens the timers dialog. Active Dialog Editor.

CTRL-ALT-L Opens the local data area dialog. Active Dialog Editor.

CTRL-ALT-LEFT Aligns selected controls left. Active Dialog Editor.

CTRL-ALT-M Opens the menu dialog. Active Dialog Editor.

CTRL-ALT-O Opens the comment dialog. Active Dialog Editor.

CTRL-ALT-P Opens the parameter data area dialog.Active Dialog Editor.

CTRL-ALT-Q Displays control sequence numbers. Active Dialog Editor.

69Copyright © Software AG 2002

Alphabetical Overview of AcceleratorsAccelerators

Accelerator Description Applicable in

CTRL-ALT-RIGHT Aligns selected controls right. Active Dialog Editor.

CTRL-ALT-S Opens the inline subroutine dialog. Active Dialog Editor

CTRL-ALT-T Opens the toolbar dialog. Active Dialog Editor.

CTRL-ALT-UP Aligns selected controls up. Active Dialog Editor.

CTRL-ALT-X Opens context menu dialog. Active Dialog Editor.

CTRL-SHIFT-D Deletes line. Active editor.

CTRL-SHIFT-E
Opens event handlers for selected
control.

Active Dialog Editor.

CTRL-SHIFT-F9 Aligns selected controls centered. Active Dialog Editor.

CTRL-SHIFT-R Starts recording. Active Program Editor.

CTRL-SHIFT-S Stops recording. Active Program Editor.

CTRL-SHIFT-P Replays recording. Active Program Editor.

CTRL-SHIFT-I Jumps to next level. Active Data Area Editor.

CTRL-SHIFT-J Jumps to previous level. Active Data Area Editor.

CTRL-SHIFT-K Delete to end of line. Active Editor.

CTRL-SHIFT-TAB Makes previous MDI window active. Anywhere inside Natural.

DEL Deletes.
Selected node in library workspace or in
active list view.

ENTER
Opens or executes Natural object or
opens a list view.

Selected node in library workspace or active
list view.

F3 Repeats "Find items". Active editor.

F6 Toggles between split windows. Active Program Editor.

F9 Vertical center of selected controls. Active Dialog Editor

SHIFT-F9 Horizontal center of selected controls. Active Dialog Editor

Copyright © Software AG 200270

AcceleratorsAlphabetical Overview of Accelerators

Commands
Purpose of Natural Commands
Issuing Natural Commands

See also:

Command Line
System Commands

Purpose of Natural Commands
Natural Studio uses various commands

to customize the current environment,
to position windows, to launch tools, and
to activate editors.

Commands can also be used in Natural programs (for example, in conjunction with the Natural stack) or used in
the Command Line to perform certain operations like stowing an object.

These System Commands can also be entered at a MORE prompt during the execution of a program. A MORE
prompt is displayed at the bottom of an output screen to signal that more output is pending. When a system
command is entered in response to a MORE prompt, program execution is interrupted and the system command
is executed.

Issuing Natural Commands
Commands can be issued in any of the following ways:

Select a menu command from the menu bar.
Click on the menu or use the access key ALT and the arrow keys to select the command.
Select a menu command from a context menu.
(activated with the right mouse button or with the Windows application key).
Click a tool-bar button.
A text description of each toolbar button is displayed as a tool tip and in the status bar when you place the
arrow pointer on the button.
Use accelerator keys.
(e.g CTRL+O to open an object). See also Accelerators.
Use the command line.
System commands can be entered in the Command Line or at the MORE prompt of a running application
(e.g. SAVE).

71Copyright © Software AG 2002

CommandsCommands

Manual Refresh
Purpose of a Manual Refresh
Performing a Manual Refresh

Purpose of a Manual Refresh
Usually when something changes in Natural Studio, an automatic refresh is executed. This happens for example,
when objects are deleted or renamed or new objects are created, or when the user has switched off the automatic
refresh function (Tools > Options > Perform automatic refresh).

There are, however, some situations where an automatic refresh does not take place, since Natural is not aware
of the modification.

As an example, imagine that two Natural processes are currently active both of which are working on the same
system file. When one Natural is applying a change to the system file (for example, creating a new object), the
second Natural is not aware of this modification. For such cases, the manual refresh can be used.

Performing a Manual Refresh
The manual refresh can only be performed on a selected system file node in the Library Workspace or on a
selected system file node of a Local Environment or Remote Environment list view.

 To perform a manual refresh

1. Select the system file node to be refreshed.
2. Open the context menu or the View menu in the menu bar and check Refresh

or simply press F5 to apply the operation.

Copyright © Software AG 200272

Manual RefreshManual Refresh

Customizing
This overview page summarizes the settings you can make on the sheets of the "Customize..." dialog to adapt the
user interface of Natural Studio to your requirements. The following topics are covered:

Commands Editing a Toolbar
Adding User-Defined Commands to a Toolbar
Removing Commands from a Toolbar
Rearranging Commands in the Toolbar

Toolbars Invoking the Toolbars Dialog Box
Creating a Toolbar
Selecting a Toolbar
Removing a Toolbar

Keyboards Changing Accelerator Key Assignments
Removing a Key Assignment
Resetting Your Personal Key Assignments

User Commands Invoking the User Commands Dialog
Defining a User Command
Adding a User Command to a Toolbar

73Copyright © Software AG 2002

CustomizingCustomizing

Commands
The following topics are covered:

Editing a Toolbar
Adding User-Defined Commands to a Toolbar
Removing Commands from a Toolbar
Rearranging Commands in the Toolbar

See also:

Toolbars and Menus
Command Line
System Commands

Editing a Toolbar
 To edit a toolbar

1. From the Tools menu, select "Customize..."
2. From the "Commands" dialog box, select a category.
3. Select a command and, using drag and drop, place the icons needed into the new toolbar at the top of the

screen.
4. Close the dialog box.

Adding User-Defined Commands to a Toolbar
To define and add user-specific commands to a toolbar, proceed as described under User Commands.

Removing Commands from a Toolbar
1. From the Tools menu, open the "Customize..." dialog box.
2. Select the command icon to be removed from the toolbar.
3. Click the right mouse button.

From the resulting context menu, choose Delete to remove the command icon.

Rearranging Commands in the Toolbar
1. From the Tools menu, open the "Customize..." dialog box.
2. Choose the command icon in the toolbar to be rearranged.
3. Using drag and drop, place the icon into the selected toolbar.

Copyright © Software AG 200274

CommandsCommands

Toolbars
The first time Natural is started, the default toolbars that are provided for each window are displayed. However,
new buttons can be added, existing ones can be removed or rearranged and even new toolbars can be created
using the "Toolbars" sheet of the "Customize" dialog.

Invoking the Toolbars Dialog Box
Creating a Toolbar
Selecting a Toolbar
Removing a Toolbar

See also:

Editing a Toolbar
Adding User-Defined Commands to a Toolbar
Removing Commands from a Toolbar
Rearranging Commands in the Toolbar

Invoking the Toolbars Dialog Box
 To invoke the dialog

1. From the Tools menu, select "Customize".
2. Click on the "Toolbars" tab.

The "Toolbars" dialog box appears.

Creating a Toolbar
 To create a new toolbar

1. In the "Toolbars" dialog box, click New to create a new toolbar.
2. In the "Toolbar Name" field, enter the name of the new toolbar.
3. Close the dialog box.

The new toolbar will be added to the existing toolbars. Proceed as described in Editing a Toolbar.

Selecting a Toolbar
 To select a toolbar

1. From the drop-down combo box in the "Toolbars" dialog box, choose the toolbar to be selected.
2. Choose Close.

The dialog box closes and the selected toolbar is displayed in the Natural desktop.

Removing a Toolbar
 To remove a toolbar

1. From the " toolbars" list box in the "Toolbars" dialog box, click on the user defined toolbar to be removed.
2. Click on the Delete button and the selected toolbar will be removed from the Natural desktop.

75Copyright © Software AG 2002

ToolbarsToolbars

Keyboards
The first time Natural is started, the default keyboard assignments that are provided for each dialog or window
are valid. New assignments can be made using the "Keyboards" sheet of the "Customize..." dialog.

The following topics are covered below:

Changing Accelerator Key Assignments
Removing a Key Assignment
Resetting Your Personal Key Assignments

See also:

Accelerators

Changing Accelerator Key Assignments
Using the "Customize" dialog, you can change or remove any accelerator key assignments.

 To change the accelerator key assignments

1. From the Tools menu, select Customize and click on the "Keyboard" tab.
2. From the "Category" list box, choose the category the command belongs to

or choose "All Commands".
3. Select the command whose accelerator key assignment is to be changed.

The current (default) assignment is displayed in the "Current Keys" field.
4. Position the cursor in the "Press New Shortcut Key" field and press the new shortcut key(s) on your

keyboard.
The keys are displayed in the field.

5. Choose the Assign button.
The assignment is entered into the "Current Keys" field.

When you close the "Customize" dialog, the new key assignment will not replace the existing assignment, but
will be available in addition to it. You can remove the existing assignment from the "Current Keys" field.

Removing a Key Assignment
 To remove an assignment

1. Select the assignment to be removed in the "Current Keys" field.
2. Choose the Remove button and choose Yes to confirm the reset confirmation query.

Resetting Your Personal Key Assignments
 To undo all personal key assignments

Choose the Reset All button.

Copyright © Software AG 200276

KeyboardsKeyboards

User Commands
The "User Commands" sheet in the "Customize..." dialog enables you to specify user-defined commands.

The following topics are covered below:

Invoking the User Commands Dialog
Defining a User Command
Adding a User Command to an Existing Toolbar

Invoking the User Commands Dialog
 To invoke the dialog

1. From the Tools menu, select "Customize...".
2. Click on the "User Commands" tab.

The "User Commands" dialog box appears.

Defining a User Command
You can define commands which contain a series of Natural commands. These user-defined commands can be
added to any toolbar.

 To define a user command

1. In the "User Commands" dialog box, select the user command to be defined, for example:
User Command 1 .

2. In the "Natural Command(s)" field, enter the Natural command(s) that are to be invoked with User
Command 1.
Separate multiple commands with a semicolon.

3. Click on Assign to assign the Natural command(s) to the user command.
The command assigned is shown next to the user command entry in the "User Command" dialog box.

4. Click on the Close button.
The user command assignment is added to the command list from where it can be added to an existing
toolbar.

Adding a User Command to an Existing Toolbar
 To add a user-defined command to a toolbar

Click to the "Commands" tab of the "Customize..." dialog.
From the "Categories" box, select "User Commands".
The list of user commands is displayed.
From the "Commands" list, select the user command and drag it to the toolbar at the top of the screen.
Choose Close.

You can move the corresponding icon to another position in the toolbar, as long as the "Customize..." dialog is
open.

77Copyright © Software AG 2002

User CommandsUser Commands

Copyright © Software AG 200278

User CommandsAdding a User Command to an Existing Toolbar

Tutorial - Getting Started with Natural
This tutorial is designed to provide a basic understanding of specific features of the Natural programming
environment and illustrates how an application can be structured as a group of modules. It is not intended to
provide an example of how an application should be built.

These sessions also represent a general introduction to how the editors can be used. Therefore explanations are
kept to a minimum. This tutorial is not intended to be a comprehensive description of the full range of
possibilities provided by the Natural editors. For a full description of all editor functions and features, please
refer to the corresponding sections in this documentation:

Program Editor | Data Area Editor | Map Editor | DDM Editor | Dialog Editor

Prerequisite:
To perform all steps of this tutorial, the database SAG-DEMO-DB must be installed and active. To start the
database, double click the SAG-DEMO-DB icon in the Natural program group.

Session 1 - Creating and Modifying a Program
Session 2 - Creating and Editing a Map
Session 3 - Checking and Running a Program
Session 4 - Creating a Local Data Area
Session 5 - Creating a Global Data Area
Session 6 - Creating an External Subroutine
Session 7 - Invoking a Subprogram

Session 1 - Creating and Modifying a Program
In this session, you will create and save a Natural program, using the program editor to enter source statements
in a program editor window.

Step 1

Natural user-written applications are stored in libraries. It may be necessary to move from one library to another
in order to perform a maintenance function or work on a different application. The application created in these
sessions will be stored in the SYSEXPG library.

Select the SYSEXPG library node in the library workspace.

 To open the library SYSEXPG

1. From the tree view, choose "System Libraries".
2. Scroll to SYSEXPG and select it.

79Copyright © Software AG 2002

Tutorial - Getting Started with NaturalTutorial - Getting Started with Natural

Step 2

Natural offers two modes of programming: structured mode and reporting mode.
Software AG recommends that you use structured mode exclusively, because it results in more clearly structured
applications. Therefore all explanations and examples in this chapter refer to structured mode. Any properties of
reporting mode will not be taken into consideration. You must be operating in structured mode to work through
the sessions in this chapter.

If the current mode is reporting mode, change it to structured mode:

 To do so

1. From the Tools menu, choose Session Parameters > Compiler options.
2. Select "Structured Mode".
3. Choose OK .

Step 3

The SYSEXPG library should include the program used in this session, PGM01. In this step, you will either edit
or create the program.

Edit PGM01

If PGM01 is available, edit the program.

 To open PGM01 for editing

Expand the library node, expand the "Programs" node, select the Program PGM01 and press ENTER.

Copyright © Software AG 200280

Tutorial - Getting Started with NaturalSession 1 - Creating and Modifying a Program

Create PGM01

If PGM01 is not available, you can create it.

 To open a new program editor window

Open the context menu of the "Programs" node and select the New item.
The program editor window is displayed:

 To modify "Program Editor Options"

If line numbers are not usable, you can modify them.

1. From the main menu bar select Tools > Options > Program Editor .
2. Set "Line Numbers" check box.

Step 4

 To save the program under the name "PGM01"

1. From the Object menu, choose Save.
If the program already exists in the library, then it is saved. Go to Step 5.
If the program does not yet exist in the library, the "Save as" dialog box appears.

2. In the "Name" text box, enter "PGM01".
3. Choose OK .

The program is now saved under the name "PGM01" in the library SYSEXPG.

Step 5

 To close PGM01 before ending the session

From the Object menu, select Close or press CTRL-F4 .

End of Session 1.

81Copyright © Software AG 2002

Session 1 - Creating and Modifying a ProgramTutorial - Getting Started with Natural

Session 2 - Creating and Editing a Map
The Natural map editor is used for creating the maps referenced in a Natural program. Once a map has been
created, it can be stored in the Natural system file, where it can be invoked by a Natural program using a WRITE
or INPUT statement.

A map consists of fields. A field can be a text field (a constant) or a data field (a variable), or any of the
graphical user interface elements provided in the map editor’s "Insert" menu. The fields that comprise a map can
be defined direct in the map editor window, or imported from another source object, such as a DDM, a program,
or a data area. Natural system variables can be imported as well.

In this session, you will create a map that contains text fields, data fields, and system variables.

Step 1

In the previous session, the screen prompting for an employee name was produced through the INPUT USING
MAP statement using MAP01. In this session, you will create the map. Note that in the INPUT USING MAP
statement, the map must be specified in quotation marks to distinguish the map from a user-defined variable.

 To open a new map editor window

Open the context menu of the SYSEXEVT node and select the New > Map item.
The map editor window appears.

Step 2

A text field is a constant that you create using the text field entry in the Insert menu, or that you import from
another Natural object. Its format is always A (for alphanumeric).

You can create a title for the map by drawing a text field and defining the text it will contain.

 To do so

1. From the Insert menu, choose Text Constant.
Or click the Text Constant toolbar button.

2. Place the text field at the top of the editor, where you want the field to begin.
3. Draw a field by holding down the left mouse button and dragging the mouse to the right about half the

width of the editor.
The text field you have just drawn is still selected. When a field is selected, its field handles appear.

The field must be selected before you can perform many of the map editor functions, such as defining a field and
selecting a color for the field.

 To define the text field

Copyright © Software AG 200282

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

1. Point to the field and double-click.
Or, from the Field menu, choose Definition .
In the text field, you can now enter the text.

2. Type "SOFTWARE AG EMPLOYEE INFORMATION".
Select the field again by clicking the mouse with the pointer outside the field and then with the pointer on
the field.

83Copyright © Software AG 2002

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

 To select a color for the text field

1. From the Field menu, choose Color.
Or click the Field Color toolbar button.

2. Select any color you want for this field. (Click the name of the color or its Option button.)
3. Choose OK .

"SOFTWARE AG EMPLOYEE INFORMATION" appears on the map in the color you selected.
4. To deselect the field, move the pointer away from the field and click.

The field handles disappear.

Step 3

Natural system variables can be imported into a map. The system variables *DATX and *TIMX display the
current date and time, when the program that invokes the map is executed.

 To import the *DATX system variable

1. From the Insert menu, choose Import .
2. Choose System variable. The "Import System Variable" dialog box appears.
3. Scroll to *DATX and select it.
4. Choose Import . The system variable will appear in the top left corner of the map.
5. Choose Quit to close the dialog box.
6. Move the *DATX field cursor below SOFTWARE AG EMPLOYEE INFORMATION.
7. Select a color for the *DATX field.

Import the *TIMX system variable. Use the same procedure you used to import the *DATX system
variable. Select a color for the *TIMX field, then move *TIMX to the line below *DATX.
The map should now look as follows.

Step 4

New fields can be created by copying and redefining existing fields.

 To copy a field to the clipboard

1. Select the text field "SOFTWARE AG EMPLOYEE INFORMATION".
2. From the Edit menu, choose Copy.

Copyright © Software AG 200284

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

 To paste the copied field into the map

1. From the Edit menu, choose Paste.
2. Drag the copied field from the top left corner to below the *TIMX field.

Notice that this field is the same color as the field you copied. If you want to change its color, from the
Field menu, select Color.

 To define the new field in the "Text Field Definition" dialog box

1. Point to the field and double-click.
Or, from the Field menu, choose Definition .
In the text field, you can now enter the text.

2. Type "PLEASE ENTER STARTING NAME:".

Step 5

A data field is a field that you create using the Data field entry in the "Insert" menu, a field that you import from
another Natural object, or a Natural system variable.

In this step, you will draw a data field and define its attributes.

 To draw the data field

1. From the Insert menu, choose Data Field.
Or click on the data field drawing tool toolbar button.

2. Place the data field to the right of PLEASE ENTER STARTING NAME:
3. Draw a field that is 20 characters long. (Using the mouse, drag the data field across the map until Len=20).

85Copyright © Software AG 2002

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

 To define the data field

1. Point to the field and double-click.
Or from the Field menu, choose Definition .
The "Field Definition" dialog box appears:

2. In the "Field" text box, delete the name and type in "#NAME-START". Press the TAB key.
Format "A" (alphanumeric) is the correct format for this field.
The alphanumeric length of the field should be "20". If not, use TAB to move the cursor to the "Length"
field and enter "20".

Copyright © Software AG 200286

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

 To specify attributes for the data field

1. Choose Attributes .
The "Attribute Definitions" dialog box appears.

2. Select the "I/O Characteristics" list box and select "Output, Modifiable" to define the field as an output field
that can be modified.

3. Enter underscore () as filler character.
This is the character that is used to fill any empty positions in input fields in the map, allowing the user to
see the exact position and length of a field when entering input.

4. Choose OK .
The "Field Definition" dialog box is displayed again.

5. Choose OK to save the data field definition that you entered.
The map could now look as follows:

87Copyright © Software AG 2002

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

Step 6

In this step, you will edit the map to add an ending name for a range of employees.

In the same way as you have created text fields and data fields so far, draw and define another text field and
another data field.

 To draw and define the "PLEASE ENTER ENDING NAME:" text field

1. Choose Insert > Text Constant to create the text field and draw a field 25 characters long, one line below
"PLEASE ENTER STARTING NAME:"

2. In the text field, enter PLEASE ENTER ENDING NAME:
3. Select a color for the text field.

 To draw and define the data field "#NAME-END"

1. Choose Insert > Data Field to draw a field 20 characters long, one space to the right of the text constant.
2. In the "Data Field Definition" dialog box, enter "#NAME-END" as the field name (the format is "A" and

the length is "20").
3. Choose Attributes and select "Output, Modifiable" as the I/O Characteristic.
4. Choose OK twice.
5. Select a color for the "#NAME-END" data field.

The output of this data field is a user-defined variable found in the DEFINE DATA statement of PGM01 that
will correspond to the new field definition entered on the map.

Step 7

 To center the field "SOFTWARE AG EMPLOYEE INFORMATION" at the top of the map

1. Select the field.
2. From the Field menu, choose Alignment.
3. From the cascading menu, choose Map center.

The text moves to the center of the map.

 To move fields to different locations in the map:

1. Move the "*DATX" field to the top line of the map (Row=1).
2. Move the "*TIMX" field to line three (Row=3), directly below the "*DATX" field.

Copyright © Software AG 200288

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

Step 8

In this step, you will move ranges of fields to new locations.

 To position the first range of fields

1. Select a range of fields that contains the text field "PLEASE ENTER STARTING NAME:" and the
"#NAME-START" data field.
Select the fields by holding down the left mouse button and dragging the mouse to surround the fields.
Release the mouse button to select the fields.

2. Move the range to line five of the map (Row=5).
Move the range by placing the selector tool within the field handles and dragging the range to the new
location.

 To position the second range of fields

1. Using the same method as above, select the text field "PLEASE ENTER ENDING NAME:" and the data
field "#NAME-END".

2. Move the range to Line Seven of the map (Row=7).
The map now looks as follows.

Step 9

The first time you save a map, you must give it a name. After the map is named, you can make changes to it and
save it or stow it without entering the name. If you want to save a modified map with a different name, choose
"Save as" and enter a different name.

 To save the map and give it a name

1. From the Object menu, choose Save As.
The Save As dialog box appears. The current library is SYSEXPG, the library where the map is saved.

2. In the "Name" text box, type "MAP01".
3. Choose Save.

The map is saved as MAP01 in the SYSEXPG library.

89Copyright © Software AG 2002

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

Step 10

Now, you will create a processing rule for a map field.

 To define a processing rule for the #NAME-START data field

1. Click the #NAME-START field once to select it.
2. From the Field menu, choose Rules.

The "Field Rules" dialog box appears.
3. Choose Create.

A program editor window opens. Enter the following processing rule:
IF & = ’ ’ REINPUT ’PLEASE TYPE IN A NAME’
 MARK *&
END-IF
*

Note:
The ampersand (&) in the processing rule will be dynamically replaced by the name of the field.

 To save the processing rule and give it a rank

1. From the Object menu, choose Save as. The "Rule Selection" dialog box appears.
2. From the list box, select "1", and then choose OK .
3. Close the "Map Rule" (program editor) window by choosing Close from the Object menu.

The window closes and MAP01 reappears.

Step 11

In this step, you will test MAP01 to check whether it works as intended.

 To test the map

1. From the Object menu, choose Test.
The map, including the processing rule, is executed. This is the same screen that appears when the map is
invoked from PGM01:

2. Type in a name and press ENTER.
You are returned to the map editor.
When you do not enter a name and press ENTER, the message "Please enter starting name" is displayed in
the message line.

Copyright © Software AG 200290

Tutorial - Getting Started with NaturalSession 2 - Creating and Editing a Map

Step 12

When the map has been successfully tested, it has to be stowed; that is, stored in both source and object form.

 To stow the map

From the Object menu, choose Stow.

Step 13

The next step is to create a helproutine and attach it to a field in a map.

 To modify the field definition for the field "#NAME-START"

1. Select the field "#NAME-START".
2. Either select Definition from the Field menu or point to the "#NAME-START" field and double-click.

The "Field Definition" dialog box appears.
3. Use TAB to move to the "Help Routine:" text box, and enter "’HELP001’" (do not forget the quotation

marks).
"HELP001" (which is yet to be created) is the name of the helproutine that is invoked when a user presses
the HELP key while the cursor is in the "#NAME-START" field.

4. Choose OK .
The map editor window appears.

5. Stow the map (that is, store it in source and object form) by choosing Stow from the Object menu.
6. From the Object menu, choose Close.

Step 14

Now the helproutine itself has to be created.

 To create the helproutine

Open the context menu of the "SYSEXEVT" node and select the New > Helproutine item.

End of Session 2.

91Copyright © Software AG 2002

Session 2 - Creating and Editing a MapTutorial - Getting Started with Natural

Session 3 - Checking and Running a Program
In the previous session, you added a variable called #NAME-END to MAP01. This variable allows the program
to provide an ending point for the READ statement. Otherwise, all employees from JONES to the end of the
alphabet would be included in your report.

Now that the map allows both the beginning and ending name to be provided on the input screen, an IF statement
must be added to the PGM01 program.

Step 1

Make sure that SYSEXPG is the current library.

In the "Programs" folder, scroll to "PGM01" and select it.

The program editor is invoked and the current version of the program PGM01 appears.

For easier editing, you can maximize the program editor window by clicking the "Maximize" button.

Step 2

The program includes the following statement:

 MOVE #NAME-START TO #NAME-END

Replace this statement with the following IF statement:

 IF #NAME-END = ’ ’
 MOVE #NAME-START TO #NAME-END
 END-IF

Step 3

You can add user comments to a program to identify the program modifications that you have made. A user
comment helps anyone editing or maintaining a source program and is ignored during processing.

A user comment is entered by inserting a statement line or lines. If the entire line is to be reserved for a user
comment, enter an asterisk and a blank (*) or two asterisks (**) in columns 1 and 2 of the line and type in the
comment. If you want to place a comment in the same line of source code, separate the code from the comment
with " /*" (a blank, a slash and an asterisk).

Add a comment to Line 3 to indicate that the program has been modified, for example:

 * A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT

Copyright © Software AG 200292

Tutorial - Getting Started with NaturalSession 3 - Checking and Running a Program

Step 4

When you have completed the above modifications to PGM01, the program should look as follows:

 * PGM-ID: PGM01
 * FUNCTION: DEMONSTRATE NATURAL PROGRAM CREATION
 * A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT
 * ---
 DEFINE DATA
 LOCAL
 01 #NAME-START (A20)
 01 #NAME-END (A20)
 01 #MARK (A1)
 01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 02 PERSONNEL-ID (A8)
 02 NAME (A20)
 02 DEPT (A6)
 02 LEAVE-DUE (N2)
 END-DEFINE
 *
 REPEAT
 *
 INPUT USING MAP ’MAP01’
 *
 IF #NAME-START = ’.’
 ESCAPE BOTTOM
 END-IF
 *
 IF #NAME-END = ’ ’
 MOVE #NAME-START TO #NAME-END
 END-IF
 *
 RD1. READ EMPLOYEES-VIEW
 BY NAME
 STARTING FROM #NAME-START
 THRU #NAME-END
 *
 IF LEAVE-DUE >= 30
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
 *
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X ’>=30’ #MARK
 *
 END-READ
 *
 IF *COUNTER (RD1.) = 0
 REINPUT ’PLEASE TRY ANOTHER NAME’
 END-IF
 *
 END-REPEAT
 *
 DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
 END-SUBROUTINE
 *
 END

93Copyright © Software AG 2002

Session 3 - Checking and Running a ProgramTutorial - Getting Started with Natural

Save the modified version of PGM01 by choosing "Save" from the "Object" menu.

Step 5

Checking a program allows you to find and correct syntax errors that would otherwise prevent the program from
being compiled. In this step, you will create an error in the source code of PGM01. Then you will check the
program to identify the error, correct the error, and run the program.

 To create an error in the PGM01 source code

1. Edit PGM01.
2. Use the arrow keys or the Go to function of the Edit menu to move the cursor to the following line:

DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X ’>=30’ #MARK
3. Move the cursor to the second quotation mark and press DEL to remove the quotation mark.

Natural uses beginning and ending quotation marks to designate text strings. A text string must be closed on
the same line in which it was opened. When the Natural compiler finds an odd number of quotation marks
on the same line, then it reports a syntax error.

4. From the Object menu, choose Check.
When the error is detected, syntax checking is suspended. The line that contains the error is displayed, and
the following error message appears:
NAT0305 TEXT STRING MUST BEGIN AND END ON SAME LINE

 To correct the error and check the program again

1. Add an quotation mark directly, and press the CONTINUE button.
Or press ENTER to return to the program editor and make the correction.

2. From the Object menu, choose Check.
When the syntax error has been corrected, and if no other syntax errors are detected, you are informed that
the check was successful.

3. Choose OK .

Step 6

In this step, you will run the program PGM01 and view the output. When you run this program, you are
prompted to enter a name. The EMPLOYEES file is searched to locate all employees with that name; then a
report that includes the Name, Department and Leave Due to each employee with that name is displayed. The
names of employees who have 30 or more days leave due are marked with an asterisk.

The prompting screen is invoked at the INPUT USING MAP statement. The final report is formatted according
to information in the DISPLAY statement.

The processing required to show which employees have more than 30 days leave is handled in the portion of the
program starting with IF LEAVE-DUE. Those with 30 or more days of leave due have an asterisk in the final
report as a result of processing in the PERFORM statement and the DEFINE SUBROUTINE statement.

Copyright © Software AG 200294

Tutorial - Getting Started with NaturalSession 3 - Checking and Running a Program

 To see if everything - including the map and the helproutine - works as intended

1. From the Object menu, choose Run to compile and execute the program PGM01.
The map MAP01 is displayed.

2. Press ENTER without typing in anything.
The following message is displayed:
PLEASE TYPE IN A NAME

3. In the first input field in the map, enter a question mark (?).
The helproutine HELP001 appears:
TYPE THE NAME OF AN EMPLOYEE.

4. In the first input field of the map, type the name MCKENNA, and press ENTER.
As there is no record with the name MCKENNA in the database, the following message is displayed:
PLEASE TRY ANOTHER NAME

5. In the first input field of the map, type the name SMITH, and press ENTER.
The database does include the name SMITH; the following list is displayed:

6. Press ENTER.
7. When the program prompts you again for a name, enter a period (.). Press ENTER again to return to the

program editor window.
8. Close PGM01.

End of Session 3.

95Copyright © Software AG 2002

Session 3 - Checking and Running a ProgramTutorial - Getting Started with Natural

Session 4 - Creating a Local Data Area

In Session 1, the fields used by the program were defined within the DEFINE DATA statement in the program
itself. It is also possible, however, to place the field definitions in a local data area outside the program, with the
program’s DEFINE DATA statement referencing that local data area by name. For a clear application structure,
it is usually better to define fields in data areas outside the programs.

In this session, the information in the DEFINE DATA statement will be relocated to a local data area outside the
program. In subsequent sessions, some of this information can be used as the basis of a global data area shared
by a program and an external subroutine. As you will see later in this tutorial, an important advantage of data
areas is to allow a program and its external subroutine to share the same data in a single data area.

Step 1

In this step, you will create a data area with three data fields. Each data field must be defined separately.

 To open a local data area editor window

1. From the Object menu, choose New.
2. From the cascading menu, choose Local Data Area.

Copyright © Software AG 200296

Tutorial - Getting Started with NaturalSession 4 - Creating a Local Data Area

 To insert the first data field

1. From the Insert menu, choose Data Field.
The "Data Field Definition" dialog box is displayed.

In the "Level" text box the default "1" is displayed.
2. In the "Name" text box, enter "#NAME-START".
3. Format "A" is the correct format for the "#NAME-START" data field. (Alphanumeric is the default format).
4. In the "Length" text box, enter "20".
5. Choose Add.

The "Define a Data Field" dialog box appears again to allow you to define another data field.

Define a second and third data field with the following attributes:

Field Name Data Field 2 Data Field 3

Level: 1 1

Field: #NAME-END #MARK

Length: 20 1

Format: A A

When the "Data Field Definition" dialog box is displayed again, choose Quit to end the field definition process.

97Copyright © Software AG 2002

Session 4 - Creating a Local Data AreaTutorial - Getting Started with Natural

The local data area now looks as follows:

Copyright © Software AG 200298

Tutorial - Getting Started with NaturalSession 4 - Creating a Local Data Area

Step 2

 To confirm that no syntax errors have been made

From the Object menu, choose Check.

Step 3

Variables defined in a Natural DDM can be imported directly into the local data area.

 To import fields from the "EMPLOYEES" DDM

1. Select the "#MARK" field.
2. From the Insert menu, choose Import .

The "Import View" dialog box appears with the name of the current library (SYSEXPG) in the "Library"
list box.

3. Open the "Library" list box and select the SYSEXDDM library.
A list of all DDMs in the SYSEXDDM library appears in the DDM list box.

4. Select the "EMPLOYEES" DDM.
A list of all the data fields in the "EMPLOYEES" DDM appears in the "Data Fields" list box.

5. Scroll through the list and select the following fields: "PERSONNEL-ID", "NAME", "DEPT", and
"LEAVE-DUE".
Note:
To select individual fields, hold down CTRL while you click the left mouse button.

6. Choose OK .
The "View Definition" dialog box appears.

7. Enter "EMPLOYEES-VIEW" as the name of the view.
8. Choose OK .

The imported fields appear in the local data area, after the "#MARK" field. The name of the view that
contains these fields (EMPLOYEES-VIEW) also appears in the data area and is identified with a V in the T
(Type) column.

99Copyright © Software AG 2002

Session 4 - Creating a Local Data AreaTutorial - Getting Started with Natural

Step 4

 To check the new local data area

1. From the Object menu, choose Check.
2. If syntax errors are found, correct them; then check the local data area again.

Step 5

 To stow the new local data area

1. From the Object menu, choose Stow.
The "Stow As" dialog box appears.

2. In the "Name" text box, enter "LDA01".
As the library SYSEXPG is highlighted in the "Library" list box, the LDA01 local data area will be stored
in this library.

3. Choose OK .

Step 6

 To close the LDA01 local data area before continuing this session

From the Object menu, choose Close.

Step 7

In this step, the PGM01 program is modified to reference the LDA01 local data area. After removing the lines
within the DEFINE DATA statement that define variables, you will add a statement to reference the local data
area.

 To edit PGM01

1. Open the SYSEXPG library and then, from the "Objects" window, open the program PGM01.
2. Maximize the program editor window for easier editing.
3. Remove the lines that define variables:

Place the cursor at the beginning of the line containing "#NAME-START" and use the mouse to select the
following text:

4. From the Edit menu, choose Delete.
5. Add a reference to LDA01 by entering the following statement in the blank line after LOCAL:

USING LDA01

Copyright © Software AG 2002100

Tutorial - Getting Started with NaturalSession 4 - Creating a Local Data Area

The program should now look as follows:

 * PGM-ID: PGM01
 * FUNCTION: DEMONSTRATE NATURAL PROGRAM CREATION
 * A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT
 * PROGRAM NOW USES A LOCAL DATA AREA
 * ---
 DEFINE DATA
 LOCAL
 USING LDA01
 END-DEFINE
 *
 REPEAT
 *
 INPUT USING MAP ’MAP01’
 *
 IF #NAME = ’.’
 ESCAPE BOTTOM
 END-IF
 *
 IF #END = ’ ’
 MOVE #NAME TO #END
 END-IF
 *
 RD1. READ EMPLOYEES-VIEW
 BY NAME
 STARTING FROM #NAME
 THRU #END
 *
 IF LEAVE-DUE >= 30
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
 *
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE 3X ’>=30’ #MARK
 *
 END-READ
 *
 IF *COUNTER (RD1.) = 0
 REINPUT ’PLEASE TRY ANOTHER NAME’
 END-IF
 *
 END-REPEAT
 *
 DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
 END-SUBROUTINE
 *
 END

101Copyright © Software AG 2002

Session 4 - Creating a Local Data AreaTutorial - Getting Started with Natural

Step 8

1. Check the PGM01 program and correct any errors.
2. Run PGM01 to confirm that the results are the same as when the DEFINE DATA statement did not

reference a local data area.
3. Stow PGM01 so that it is available for Session 5.
4. Close PGM01.

End of Session 4.

Copyright © Software AG 2002102

Tutorial - Getting Started with NaturalSession 4 - Creating a Local Data Area

Session 5 - Creating a Global Data Area

In Natural, data can be defined in a single location outside any particular program or routine. Data defined in
such a global data area can then be shared by multiple programs/routines.

In this session, you will create a global data area. In addition, you will modify the local data area created in the
previous session. You will also modify the program so that it references not only the local data area, but also the
new global data area.

Step 1

The local data area that you created in Session 4 (LDA01) is stored in the SYSEXPG library. Before you start
this session, make sure that the SYSEXPG library is the current library.

You can create a new data area from an existing data area by editing the data area and saving it with a different
name and type. The original data area remains unchanged, and the new data area can be edited.

In this step, you will use the local data area LDA01 to create a global data area.

Open LDA01.

 To save LDA01 with the name "GDA01" and change the type to "GDA"

1. From the Object menu, choose Save As.
The "Save As" dialog box appears.

2. In the "Name" text box, enter GDA01.
Do not change the name of the current library (SYSEXPG). The new global data area is stored in the
SYSEXPG library.

3. Open the "Type" list box and select "Global".
4. Choose OK .

The data area is saved as a global data area named "GDA01". GDA01 appears in the data area editor
window.

Step 2

 To remove the data fields "#NAME-START" and "#NAME-END"

1. Select the fields "#NAME-START" and "#NAME-END".
2. From the Edit menu, choose Delete.

Note:
To select multiple fields, hold down the left mouse button and drag the mouse across the fields to be selected.

103Copyright © Software AG 2002

Session 5 - Creating a Global Data AreaTutorial - Getting Started with Natural

The global data area should now look as follows:

Step 3

The new data area must be stowed before any program referencing that data area can be compiled.

 To stow the new data area

1. Stow GDA01 by choosing "Stow" from the "Object" menu.
2. Close GDA01 by choosing "Close" from the "Object" menu.

Step 4

Now that the new global data area has been created, the variables contained in it must be removed from the local
data area.

Open LDA01.

Copyright © Software AG 2002104

Tutorial - Getting Started with NaturalSession 5 - Creating a Global Data Area

 To remove all the data fields that are now in the global data area GDA01 ("#MARK",
"EMPLOYEES-VIEW", and all remaining lines)

1. Select all fields except "#NAME-START" and "#NAME-END".
2. From the Edit menu, choose Delete.

The revised local data area now contains only the variables "#NAME-START" and "#NAME-END":

3. Stow the revised local data area.
LDA01 is now ready to be referenced by the program PGM01.

4. Close LDA01.

Step 5

The DEFINE DATA statement in the PGM01 program must now reference data that are located in the global
data area GDA01 as well as the local data area LDA01.

 To open PGM01, and add a reference to the global data area

1. Open PGM01.
2. Place the cursor at the end of the DEFINE DATA statement and press ENTER.
3. In the blank line created, type GLOBAL USING GDA01 and press ENTER.

105Copyright © Software AG 2002

Session 5 - Creating a Global Data AreaTutorial - Getting Started with Natural

Step 6

In this step, you will revise the output instructions in PGM01.

In this step, you will modify the program PGM01 to include a WRITE TITLE statement, which produces a
multiple-line title in the resulting report, and modify the format of the DISPLAY statement.

 To do so

1. Insert a blank line after the following lines:
RESET #MARK
END-IF

2. Add the following WRITE TITLE statement:
WRITE TITLE
 / ’*** PERSONS WITH 30 OR MORE DAYS LEAVE DUE ***’
 / ’*** ARE MARKED WITH AN ASTERISK ***’//
The "/" notation indicates a line break. The title lines are centered and are not underlined.

3. Change the DISPLAY statement as follows:
DISPLAY 23X ’//N A M E’ NAME
 3X ’//DEPT’ DEPT
 3X ’/LV/DUE’ LEAVE-DUE
 3X ’//*’ #MARK

The revised program should now have the changes to the DEFINE DATA, WRITE TITLE, DISPLAY
statements, and the program header (comment) as shown below.

Copyright © Software AG 2002106

Tutorial - Getting Started with NaturalSession 5 - Creating a Global Data Area

 * PGM-ID: PGM01
 * FUNCTION: DEMONSTRATE NATURAL PROGRAM CREATION
 * A BEGINNING AND ENDING NAME ARE USED FOR THE OUTPUT
 * PROGRAM NOW USES A LOCAL DATA AREA
 * A GLOBAL DATA AREA AND TITLE HAVE BEEN ADDED AND
 * THE DISPLAY STATEMENT HAS BEEN CHANGED
 * ---
 DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
 END-DEFINE
 *
 REPEAT
 *
 INPUT USING MAP ’MAP01’
 *
 IF #NAME = ’.’
 ESCAPE BOTTOM
 END-IF
 *
 IF #END = ’ ’
 MOVE #NAME TO #END
 END-IF
 *
 RD1. READ EMPLOYEES-VIEW
 BY NAME
 STARTING FROM #NAME
 THRU #END
 *
 IF LEAVE-DUE >= 30
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
 *
 WRITE TITLE
 / ’*** PERSONS WITH 30 OR MORE DAYS LEAVE DUE ***’
 / ’*** ARE MARKED WITH AN ASTERISK ***’//
 *
 DISPLAY 23X ’//N A M E’ NAME
 3X ’//DEPT’ DEPT
 3X ’/LV/DUE’ LEAVE-DUE
 3X ’//*’ #MARK
 *
 END-READ
 *
 IF *COUNTER (RD1.) = 0
 REINPUT ’PLEASE TRY ANOTHER NAME’
 END-IF
 *
 END-REPEAT
 *
 DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
 END-SUBROUTINE
 *
 END

107Copyright © Software AG 2002

Session 5 - Creating a Global Data AreaTutorial - Getting Started with Natural

Step 7

After you have completed all changes:

1. Check the program and correct any errors that might exist.
2. Run the program, using "SMITH" as the name on the input screen.

Note the differences in the report output, which should have the following format:

3. After you have confirmed that PGM01 has no errors, stow it for future modification in Session 6 and close
PGM01.

End of Session 5.

Copyright © Software AG 2002108

Tutorial - Getting Started with NaturalSession 5 - Creating a Global Data Area

Session 6 - Creating an External Subroutine

In Natural, a subroutine can be defined either within a program, or as an external subroutine outside the program.

Until now, the subroutine "MARK-SPECIAL-EMPLOYEES" has been defined within the program using a
DEFINE SUBROUTINE statement. In this session, the subroutine will be defined as a separate object external to
the program.

Because both internal and external subroutines are invoked with a PERFORM statement, only minimal changes
to the program are required.

Step 1

In this step, you will create a subroutine named SUBR01:

Note:
This subprogram is contained in library SYSEXPG. If you have access to this library, you do not have to
perform this step.

 To open a new program editor window

1. From the Object menu, choose New.
2. From the cascading menu, choose Subroutine.
3. Enter the following statements:

* SUBR-ID: SUBR01
*
* FUNCTION: DEMONSTRATE NATURAL
* THIS IS A SUBROUTINE
*
*
*
*
*---

 To save the subroutine

1. From the Object menu, choose Save As.
The "Save As" dialog box appears.

2. In the "Name" text box, enter "SUBR01".
SUBR01 should be saved in the SYSEXPG library. If SYSEXPG is not the current library, from the
"Library" list box, select SYSEXPG.

3. Choose OK .

109Copyright © Software AG 2002

Session 6 - Creating an External SubroutineTutorial - Getting Started with Natural

Step 2

In this step, you will edit the program PGM01, copy two statements and paste them into the subroutine SUBR01.

 To edit the program PGM01

1. Use the Minimize button to minimize SUBR01.
Note:
You can reopen SUBR01 by clicking its icon or by choosing "SUBR01" from the "Window" menu.

2. Open PGM01.

 To copy the DEFINE DATA statement

1. Place the cursor at the beginning of the DEFINE DATA statement and drag the mouse until the following
lines are selected:
DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
END-DEFINE
*

2. From the Edit menu, choose Copy.
The DEFINE DATA statement is copied and placed on the clipboard.

3. Use the Minimize button to minimize PGM01.

 To paste the copied statement into SUBR01

1. From the Window menu, choose SUBR01.
2. Place the cursor below the last comment line.
3. From the Edit menu, choose Paste.

The DEFINE DATA statement appears.
4. Cut the following DEFINE SUBROUTINE block from PGM01 and paste it into SUBR01. Follow the same

procedure as above but, from the Edit menu, choose Cut instead of Copy.
DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
END-SUBROUTINE
*

5. Paste the block below the END-DEFINE in program PGM01.
6. Add an END statement at the end of the subroutine.

Copyright © Software AG 2002110

Tutorial - Getting Started with NaturalSession 6 - Creating an External Subroutine

Step 3

The subroutine SUBR01 should now appear as follows:

 * SUBR-ID: SUBR01
 *
 * FUNCTION: DEMONSTRATE NATURAL
 * THIS IS A SUBROUTINE
 *
 *
 *
 *
 * ---
 DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
 END-DEFINE
 *
 DEFINE SUBROUTINE MARK-SPECIAL-EMPLOYEES
 MOVE ’*’ TO #MARK
 END-SUBROUTINE
 *
 END

1. From the Object menu, choose Check to check SUBR01 and correct any errors.
2. From the Object menu, choose Stow to stow SUBR01.
3. From the Object menu, choose Close to close SUBR01.

111Copyright © Software AG 2002

Session 6 - Creating an External SubroutineTutorial - Getting Started with Natural

The program PGM01 should now look as follows:

 * PGM-ID: PGM01
 * FUNCTION: DEMONSTRATE NATURAL
 * PROGRAM NOW USES A LOCAL DATA AREA
 * A GLOBAL DATA AREA AND TITLE HAVE BEEN ADDED AND
 * THE DISPLAY STATEMENT HAS BEEN CHANGED
 * THE SUBROUTINE IS NOW EXTERNAL
 * ---
 DEFINE DATA
 GLOBAL USING GDA01
 LOCAL USING LDA01
 END-DEFINE
 *
 REPEAT
 *
 INPUT USING MAP ’MAP01’
 *
 IF #NAME-START = ’.’
 ESCAPE BOTTOM
 END-IF
 *
 IF #NAME-END = ’ ’
 MOVE #NAME TO #NAME-END
 END-IF
 *
 RD1. READ EMPLOYEES-VIEW
 BY NAME
 STARTING FROM #NAME-START
 THRU #NAME-END
 *
 IF LEAVE-DUE >= 30
 PERFORM MARK-SPECIAL-EMPLOYEES
 ELSE
 RESET #MARK
 END-IF
 *
 WRITE TITLE
 / ’*** PERSONS WITH 30 OR MORE DAYS LEAVE DUE ***’
 / ’*** ARE MARKED WITH AN ASTERISK ***’ //
 *
 DISPLAY 23X ’//N A M E’ NAME
 3X ’//DEPT’ DEPT
 3X ’/LV/DUE’ LEAVE-DUE
 3X ’//*’ #MARK
 *
 END-READ
 *
 IF *COUNTER (RD1.) = 0
 REINPUT ’PLEASE TRY ANOTHER NAME’
 END-IF
 *
 END-REPEAT
 *
 END

Copyright © Software AG 2002112

Tutorial - Getting Started with NaturalSession 6 - Creating an External Subroutine

Step 4

1. Check PGM01 and correct any errors.
2. Run the program to confirm that the results are the same with an external subroutine as with an internal

subroutine.
3. Stow the program for the next session.
4. Close PGM01, saving your changes.

End of Session 6.

113Copyright © Software AG 2002

Session 6 - Creating an External SubroutineTutorial - Getting Started with Natural

Session 7 - Invoking a Subprogram

In Natural, both subprograms and subroutines can be invoked from a main program.

A subprogram is invoked using a CALLNAT statement. Data are passed from the main program (the calling
program) to a subprogram through a set of parameters that are referenced or defined in the DEFINE DATA
PARAMETER statement of the subprogram.

While a subroutine such as SUBR01 created in Session 6 shares a global data area with the main program, the
subprogram only receives data that are passed by way of a parameter list from the main program’s CALLNAT
statement.

In this session, the PGM01 program will be expanded to include a CALLNAT statement that invokes a
subprogram. In the subprogram, the employees identified from the main program will be the basis of a FIND
request to the VEHICLES file. As a result, your report will contain VEHICLES information from the
subprogram as well as leave due, etc. from the main program.

The new subprogram will require the creation of a local data area and a parameter data area. In this case, new
variables will be defined in the main program’s local data area, and this will in turn help create the subprogram’s
parameter data area variables.

Step 1

The local data area that you created in Session 4 (LDA01) is stored in the SYSEXPG library. Make sure that the
SYSEXPG library is the current library.

In this step, you will modify the LDA01 local data area to accommodate the new subprogram. The following
fields must be added to LDA01:

 #PERS-ID
 #MAKE
 #MODEL

These fields are referenced in the CALLNAT statement that you will add to the program PGM01 in a later step.

Open LDA01.

Copyright © Software AG 2002114

Tutorial - Getting Started with NaturalSession 7 - Invoking a Subprogram

 To add the data fields

1. Select the field "#NAME-END".
2. From the Insert menu, choose Data Field.

The "Data Field Definition" dialog box appears.
In the "Level" text box, the default "1"is displayed.

3. In the "Name" text box, enter "#PERS-ID".
4. In the "Length" text box, enter "8".
5. Choose Add.

The field definition you entered is added to the LDA01 local data area, and the "Data Field Definition"
dialog box reappears, allowing you to define the next data field.

 To define the two remaining fields, "#MAKE" and "#MODEL", as you defined the "#PERS-ID" field,
enter a length of "20" for each field

1. Choose Quit to close the "Data Field Definition" dialog box and return to the data area editor window.
The local data area should now appear as follows.

2. Check and stow the LDA01 local data area.

Step 2

With minor modifications, the LDA01 local data area can be used to create the parameter data area that will be
needed for the subprogram.

In this step, you will delete two of the data fields in LDA01, then save the revised data area as a parameter data
area named PDA01. The original LDA01 local data area remains intact. (It is also possible to define the
parameter data area directly by using the menu to choose "Object > New > Parameter data area").

Open LDA01.

 To delete the data fields "#NAME-START" and "#NAME-END"

1. Select the fields "#NAME-START" and "#NAME-END".
2. From the Edit menu, choose Delete.

 To save the data area with the name PDA02 and data area type "Parameter"

1. From the Object menu, choose Save As.
The "Save As" dialog box appears.

2. In the "Name" text box, enter "PDA02".
3. Open the "Type" list box and select "Parameter".

115Copyright © Software AG 2002

Session 7 - Invoking a SubprogramTutorial - Getting Started with Natural

4. Choose OK.
Your parameter data area should now look as follows.

5. Check the new parameter data area and correct any errors.
6. In the SYSEXPG library, stow the parameter data area.
7. Close the parameter data area.

Step 3

The subprogram will also use variables that are local to the program. In this step, you will create a new local data
area.

 To open a new data area window to create a local data area

1. From the Object menu, choose New.
2. From the cascading menu, choose Local data area.

Copyright © Software AG 2002116

Tutorial - Getting Started with NaturalSession 7 - Invoking a Subprogram

Step 4

Fields contained in any Natural DDM can be imported into a data area. In this step, you will import several fields
from the VEHICLES DDM into the new local data area.

 To import fields from the VEHICLES DDM

1. From the Insert menu, choose Import .
The "Import View" dialog box appears with the name of the current library (SYSEXPG) in the "Library"
list box.

2. Open the "Library" list box and select the SYSEXDDM library.
A list of all DDMs in the SYSEXDDM library appears in the DDM list box.

3. Select the "VEHICLES" DDM.
A list of all the data fields in the "VEHICLES" DDM appears in the "Data fields" list box.

4. Select the fields "PERSONNEL-ID" through "MODEL" (drag the mouse across the fields to select them)
and choose OK.

5. In the "View Definition" dialog, choose OK .
The fields appear in the data area window.

117Copyright © Software AG 2002

Session 7 - Invoking a SubprogramTutorial - Getting Started with Natural

The local data area now contains fields imported from the "VEHICLES" DDM as shown below:

Copyright © Software AG 2002118

Tutorial - Getting Started with NaturalSession 7 - Invoking a Subprogram

Step 5

 To save the new local data area as LDA02

1. From the Object menu, choose Save As.
The "Save As" dialog box appears.

2. In the "Name" text box, enter "LDA02".
3. Choose OK .

The local data area is saved as LDA02 in the SYSEXPG library.
4. Check the new local data area and correct any errors.
5. Stow the new local data area.

LDA02 is now ready for use by the subprogram.
6. Close LDA02.

Step 6

The subprogram used in this session, SPGM02, receives the personnel number passed by the main program
(PGM01) and uses this number as the basis for a search of the VEHICLES file.

The SYSEXPG demo library should include the SPGM02 subprogram.

If SPGM02 is available, ensure that it has been stowed and then proceed directly to Step 7 (modifying the main
program) later in this session.

If SPGM02 is not available, you can create it. Instructions are provided below.

119Copyright © Software AG 2002

Session 7 - Invoking a SubprogramTutorial - Getting Started with Natural

 To open a new program editor window to create the subprogram

1. From the Object menu, choose New.
2. From the cascading menu, choose Subprogram.
3. Enter the subprogram shown below:

* PGM-ID: SPGM02
* --
DEFINE DATA
 PARAMETER
 USING PDA02
 LOCAL
 USING LDA02
END-DEFINE
*
FD1. FIND (1) VEHICLES
 WITH PERSONNEL-ID = #PERS-ID
 MOVE MAKE (FD1.) TO #MAKE
 MOVE MODEL (FD1.) TO #MODEL
 ESCAPE BOTTOM
END-FIND
*
END

4. Save SPGM02 and stow it.
5. Close SPGM02.

Step 7

In this step, you will modify the main program (PGM01) to accommodate the subprogram.

 To do so

1. Open PGM01.
2. Add the following statements immediately before the WRITE TITLE statement:

RESET #MAKE #MODEL
CALLNAT ’SPGM02’ PERSONNEL-ID #MAKE #MODEL

The parameters passed in the CALLNAT statement come from both the global data area and the local data area.
Also, the variables defined in the parameter data area of the subprogram do not have to have the same name as
the variables in the CALLNAT statement. Because the parameters are passed by address, it is only necessary that
they match in sequence, format, and length.

Copyright © Software AG 2002120

Tutorial - Getting Started with NaturalSession 7 - Invoking a Subprogram

Because the subprogram is now returning vehicle information, the DISPLAY statement must be modified as
shown below:

 *
 WRITE TITLE
 / ’*** PERSONS WITH 30 OR MORE DAYS LEAVE DUE ***’
 / ’*** ARE MARKED WITH AN ASTERISK ***’ //
 DISPLAY 1X ’//N A M E’ NAME
 1X ’//DEPT’ DEPT
 1X ’/LV/DUE’ LEAVE-DUE
 ’ ’ #MARK
 1X ’//MAKE’ #MAKE
 1X ’//MODEL’ #MODEL

1. Check PGM01 and correct any errors.
2. Run PGM01.
3. Stow PGM01. Close PGM01.

End of Session 7.

121Copyright © Software AG 2002

Session 7 - Invoking a SubprogramTutorial - Getting Started with Natural

Class Builder
The following topics are covered below:

Introduction
What is the Class Builder?
Class Builder Interface
Class Builder Nodes
Node Properties
Adding Class Components
Renaming Class Components
Removing Class Components
Editing Class Components
Using Interfaces from several Classes
Locking Concept
Tutorial
Glossary

Introduction
The Class Builder is a tool which can be used to display a Natural class in a structured hierarchical order, and
also to manage the class and its components efficiently.

A Natural class can be composed of various components: "real" Natural objects (for example, an object data
area) or objects which exist only in the class source (for example, interface components).
The Class Builder represents each component of the class in the form of a node. By selecting these nodes, the
class and its components can be managed in a context-sensitive manner.

This section explains how to create and modify a Natural class with the Class Builder. Please refer to the
NaturalX documentation to become acquainted with the general usage of Natural classes.

Copyright © Software AG 2002122

Class BuilderClass Builder

What is the Class Builder?
The Class Builder provides the following features:

It is fully integrated in the general Natural user interface.
The components of a class are displayed as nodes (library workspace or list view) in the same way as
Natural modules. Every type of node has a special icon assigned which provides detailed information for
that component.
Natural objects which are used by a class (for example, ODA), can be managed (edit, stow, ...) by the Class
Builder.
Class and interface GUIDs (Global Unique IDs) are generated and hidden.
Class comments (one comment for every class component) can be created and changed by the Class
Builder.
The class source is generated automatically.

Which Classes can be handled by the Class Builder?

The Class Builder can manage any class which can be successfully checked. No special statements must be
written in the class source. This means that it is possible to change classes which have been generated with the
Class Builder with the program editor and vice versa. This is especially important if a class is used on several
platforms in that the Class Builder is not available on all Natural platforms.

The class syntax is highly "flexible", i.e., it is possible to obtain the same runtime behavior with different syntax
constructs. This was important for earlier Natural versions, because the user had to type all class code himself.
With the Class Builder, this is no longer necessary; the Class Builder will generate the class code and create
Natural objects, which are used by the class. The Class Builder will generate only the most reasonable code.
For this reason, the following features are not supported by the Class Builder:

123Copyright © Software AG 2002

What is the Class Builder?Class Builder

create a new GUID LDA: The Class Builder generates a GUID for the class and the interfaces of the class.
If you wish to define the GUID yourself, you must create a LDA outside of the Class Builder and then link
it to the class.
create new inline data definitions: The Class Builder only provides for the creation of new data areas.
This is because data definitions are usually used in several places (for example, method parameter in class
and method subprogram) and it is fault-prone if the same inline data definitions have to be used more than
once.
use data from inline data definitions for assignments in the Class Builder: If data definitions have to be
assigned to class components in the case of unique IDs and property implementations, the Class Builder
offers a list of all data definitions from the corresponding data areas. Data from inline data definitions will
not be included in these lists. This means, for example, that the object data variable which is defined inline
cannot be used as property implementation.

Although the Class Builder does not permit the creation of all class syntax constructs, it can nonetheless read
existing classes with these constructs and can be used to modify these constructs.

If the Class Builder cannot read a class because it is syntactically incorrect, it displays an error message and
activates the program editor. The syntax error must be corrected in the program editor. After the class has been
saved, it can be opened with the Class Builder.

Note: If you save a class with the Class Builder, the class source will be generated. This means that any special
source formats, such as indentation, will be lost.

Copyright © Software AG 2002124

Class BuilderWhich Classes can be handled by the Class Builder?

When is a Class saved?

When a class is opened in the Class Builder, the contents are read from the class source and stored in an internal
structure. If you then change the class, these changes are performed only on the internal structures. The changes
are visible in all views of Natural. So, for example, when a new interface is added in the library workspace, a
node for this interface will also be created in the "Interfaces" list view of the class. If you want to save your
changes, you must execute "Save", "Save As" or "Stow" for the class.

If you create a new class, this does not automatically create a new class module. This is only done when "Save",
"Save As" or "Stow" is executed for the class. For this reason, a "new" class will not be visible in the File View
of the library workspace until it is saved the first time.

If you want to remove the changes which you applied to a class, you can use the "Restore" command. This
command will restore the class as it is contained in the class module, i.e., the last saved state.

If Natural is ended and unsaved classes exits, the user will be asked if the classes should be saved.

Class Comments

The Class Builder tries to assign every comment found in the class source to one component of the class. A
comment is usually assigned to the following class component. For example a comment which is found before
the definition of an interface is taken as comment for this interface.

The comments can be changed and created via the "Properties" menu item, which is available for all class
component nodes. For more information, see Node Properties.

Note: If a class is read by the Class Builder for the first time, it is possible that the Class Builder assigns the
comments to a component other than the one the user expects. No comment will be lost when the class is saved,
but the user should check if the comments are assigned to the correct components.

When a class is saved by the Class Builder for the first time, all comments will be marked with a special tag.
This ensures that the comment assignment is correct when this class is read later by the Class Builder.

125Copyright © Software AG 2002

When is a Class saved?Class Builder

Class Builder Interface
The Class Builder is available in the logical and flat view of Natural. It is fully integrated in the general Natural
user interface which shows the Natural objects as nodes of a tree or list view.
In the Library Workspace, a class can be "opened" by expanding the class node. The class nodes are grouped
hierarchically. For example, the interface is a child of the class node and the method is a child of the interface
node. Every class node provides the same features as all other nodes, for example, a context menu which allows
node-specific actions. Most of the class nodes that have child nodes can be opened as a list view which displays
all children of this node. The List View shows some more information about the nodes (for example, the library
in which an object data area is located). The list view nodes offer the same context menu as the corresponding
library workspace nodes. The columns of a list view can be sorted alphabetically.

Copyright © Software AG 2002126

Class BuilderClass Builder Interface

Logical View

The class nodes of the logical view are inscribed with the class name, i.e., the name that is used when an object
of this class is created with the CREATE OBJECT statement.
In the logical view the nodes are, as a basic principle, grouped by their type. This is also valid for the class
nodes. Class nodes of the same type are collected under a group node which describes the type with its contents.
Therefore, all object data nodes are children of the object data group node named "Object Data".

Library Workspace

You can expand and collapse nodes of a class in the Library Workspace. Expand displays all child nodes and
Collapse hides all child nodes of the selected class node.
The logical view provides you with a structured view of the class. You can then expand those class nodes on
which you wish to work. For more information, refer to the Natural Studio documentation.

List Views

Most of the parent nodes of a class have an assigned list view which can be opened with the "Open" command
from the context menu. This section describes the information which is shown in the list views of the logical
view.For more information about List Views, refer to the Natural Studio documentation.

Class List View

The class list view consists of group nodes. The list view for a group node can be opened with the "Open"
command.

The following group nodes exist:

"Object Data" group : is displayed if the class uses a ODA
"Local Data" group : is displayed if the class uses a LDA for class or interface GUIDs
"Interface Modules" group : is displayed if the class uses an Interface Module (see Using Interfaces from
several Classes).
"Interfaces" group : is displayed if the class has defined interfaces (internal or external)

The class list view has the following columns:

Type: type of the node (e.g. Object Data)
Count: number of components of the specified type

127Copyright © Software AG 2002

Logical ViewClass Builder

Object Data Group List View

The "Object Data" group list view consists of object data nodes. Choosing the "Open" command for a node will
open the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Object Data" group list view has the following columns:

Name: name of the object data module or "Inline" in the case of an inline data definition
Library : library where the object data module is located (is empty for inline data definitions or if the data
area has not yet been created)
Type: Natural type of the object data module ("Local Data Area", "Parameter Data Area" or "Inline
Definition")

Local Data Group List View

The "Local Data" group list view consists of local data nodes. Choosing the "Open" command for a node will
open the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Local Data" group list view has the following columns:

Name: name of the local data module or "Inline" for an inline data definition.
Library : library where the local data module is located (empty for inline data definitions or if the data area
has not yet been created).
Type: Natural type of the local data module ("Local Data Area", "Parameter Data Area" or "Inline
Definition").

Interface Modules Group List View

The "Interface Modules" group list view consists of interface module nodes (see Interface Module List View).
Choosing the "Open" command for a node will open the list view (see Using Interfaces from several Classes) for
this particular interface module.

The "Interface Modules" group list view has the following columns:

Name: name of the interface module (copycode name)
Library : library where interface module is located.

Interface Module List View

The interface module list view consists of interface nodes. Choosing the "Open" command for a node will open
the list view (see Interface List View) for this particular interface.

The interface module list view has the following columns:

Name: name of the interface.

Copyright © Software AG 2002128

Class BuilderLogical View

Interfaces Group List View

The "Interfaces" group list view consists of interface nodes. Choosing the "Open" command for a node will open
the list view (see Interface List View) for this particular interface.

The "Interfaces" group list view has the following columns:

Name: name of the interface.
Component Type: "Internal Interface" for interfaces which are defined in the class and "External Interface"
for interfaces which are defined in an interface module included in this class.
Defined In: interface module name for externally defined interfaces (empty for internal interfaces).

Interface List View

The interface list view consists of group nodes. Choosing the "Open" command for a node will open a list view
for this particular group.

The following group nodes exist:

"Properties" group : is displayed if the interface contains property definitions
"Methods" group : is displayed if the interface contains method definitions.

The interface list view has the following columns:

Type: type of the node (e.g. Properties).
Count: number of components of the specified type.

Properties Group List View

The "Properties" group list view consists of property nodes. The "Property" group list view has the following
columns:

Name: name of the property.
Format: format of property.
Length: length of property.
Dimension: dimension of property.
Read-only: shows whether property is read-only or not.
ODA Variable: name of assigned ODA variable

129Copyright © Software AG 2002

Logical ViewClass Builder

Methods Group List View

The "Methods" group list view consists of method implementation and parameter data nodes. For every method
of the interface, it contains one method implementation (subprogram) node and one node for every parameter
data definition of the method.
Choosing the "Open" command for a node of this list view will open the editor for the particular node type (for
example, program editor for method implementation node).

The "Methods" group list view has the following columns:

Name: name of the method. The parameter data nodes are numbered from 1 to n (for example, INIT (2) for
the second parameter data node of method INIT).
Implementation: only for method implementation node: the name of the subprogram which implements the
method
Parameter Data: only for method parameter data node: the name of the parameter data module or "Inline"
for an inline data definition
Library : depending on the node type, library where implementation or parameter data module is located
(empty for inline data definitions or if the Natural module has not yet been created).

Method Parameter Data Group List View

The "Parameter Data" group list view consists of parameter data nodes. Choosing the "Open" command for a
node will open the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Parameter Data" group list view has the following columns:

Name: name of the parameter data module or "Inline" for an inline data definition.
Library : library where parameter data module is located (empty for inline data definitions or if the data
area has not yet been created)
Type: Natural type of parameter data module ("Parameter Data Area" or "Inline Definition")

Copyright © Software AG 2002130

Class BuilderLogical View

131Copyright © Software AG 2002

Logical ViewClass Builder

Flat View

The class nodes of the flat view show the class module name.
Unlike the logical view, the flat view does not contain any group nodes. The flat view has the advantage that the
level where a specific class component is displayed is lower compared to the logical view, and thereby provides
you with a better class overview.

Library Workspace

You can expand and collapse nodes of a class in the Library Workspace. Expand displays all child nodes and
Collapse hides all child nodes of the selected class node. The flat view provides you with a general overview of
the class. It lists all sub-components of a class component on the same level. For example, if an interface node is
expanded, all properties and methods of the interface will be displayed as child nodes of the interface node. For
more information, see Natural Application Development Environment.

List Views

The flat view supports only a few list views because of the low node nesting level. The list views can be opened
with the "Open" command from the context menu. This section describes the information which is shown in the
list views of the flat view. For more information about List Views, refer to the Natural Studio documentation.

Class List View

The class list view contains a node for every child component.

The following nodes exist:

Object Data node for every ODA of the class. Choosing the "Open" command of the node opens the data
area editor for data areas and a special Class Builder dialog for inline definitions
Local Data node for every GUID LDA of the class. Choosing the "Open" command of the node opens the
data area editor for data areas and a special Class Builder dialog for inline definitions.
Interface Module node for every interface module which is used by the class.Choosing the "Open"
command of the node will open the interface module list view.
Interface node for every interface of the class (external and internal). Choosing the "Open" command of
the node will open the interface list view.

The class list view has the following columns:

Name: name of the component.
Component Type: indicates the type of the component ("Object Data", "Local Data", "Interface Module",
"External Interface" or "Internal Interface").
Type: only for component type "Object Data" and "Local Data": Natural type of data module ("Local Data
Area", "Parameter Data Area" or "Inline Definition")

Copyright © Software AG 2002132

Class BuilderFlat View

Interface Module List View

The interface module list view consists of interface nodes. Choosing the "Open" command of a node will open
the list view (see List View) for this particular interface.

The interface module list view has the following columns:

Name: name of the interface.

133Copyright © Software AG 2002

Flat ViewClass Builder

Interface List View

The interface list view contains all nodes for the properties and methods of the interface.

The following nodes exist:

Property node for every property of the interface.
Method implementation node for every method of the interface. Choosing the "Open" command for the
node will open the program editor with the specified implementation (subprogram).
Method parameter data node for every parameter data component of every method of the interface.
Choosing the "Open" command for the node will open the data area editor for data areas and a special Class
Builder dialog for inline definitions.

The interface list view has the following columns:

Name: name of the property or method; the parameter data nodes for methods are numbered from 1 to n
(for example, INIT (2) for the second parameter data node of method INIT).
Implementation: only for properties and method implementation node: the name of the assigned ODA
variable for properties and the name of the subprogram which implements the method for methods.
Parameter Data: only for method parameter data node: the name of the parameter data module or "Inline"
for an inline data definition.
Library : only for methods: depending on the node type, library where implementation or parameter data
module is located (empty for inline data definitions or if the Natural module has not yet been created).
Format: only for properties: format of property.
Length: only for properties: length of property.
Dimension: only for properties: dimension of property.
Read-only: only for properties: shows whether property is read-only or not.

Copyright © Software AG 2002134

Class BuilderFlat View

Class Builder Nodes
Related to the user interface, every component of a class is represented by a node. Nodes are displayed both in
the library workspace and in the list views.
Every node has an icon and textual information about the component which can be the name of the component
(in the library workspace) or the name of the component and additional information (in the list views).

The following table lists all available Class Builder nodes with their icons and a short description:

Type Icon Description

new class new class which has not yet been saved

class (src) class which is only available as source

class (gp) class which is only available as generated program

class (src & gp) class which is available as source and generated program

ODA object data defined in a data area module

inline ODA object data defined with an inline data definition

LDA local data (for GUIDs) defined in a data area module

inline LDA local data (for GUIDs) defined with an inline data definition

Interface Module interface module, i.e., copycode which defines interfaces

internal interface interface which is defined in the class

external interface interface which is defined in an interface module that is used by the class

internal property property which is defined in an internal interface

external property property which is defined in an external interface

internal method method which is defined in an internal interface

external method method which is defined in an external interface

method implementation subprogram which implements a method

method PDA method parameter data defined in a data area module

inline method PDA method parameter data defined with an inline data definition

In the following section, the Class Builder nodes are described in more detail. The commands of a specific node
can be invoked from the context menu of the node or the "Classes" toolbar.

135Copyright © Software AG 2002

Class Builder NodesClass Builder

Class Nodes

The class node represents the class itself. The name displayed in the class node is either the class name (logical
view) or the class module name (flat view).

Types

New Class

If a new class is created, it is displayed with the new class icon until it is saved the first time. Therefore, new
class means that the class is only "transient" in the current Natural session and is not available in source format.
For this reason, the new class will not be shown in the File View which shows the source and gp files of the
Natural objects. In addition, it is not possible to execute all class node commands on a new class.

Source-Only

The source-only class icon is displayed if the class is only available in source format but has not yet been
cataloged.

GP-only (icon)

The GP-only class icon is displayed if the class is only available in GP format. Classes of this type cannot be
handled with the Class Builder and the context menu of these classes is the same as for all other Natural objects
which are only available in GP format.

Source-and-GP

The Source-and-GP class icon is displayed if the class is available in source and GP format.

Commands

Command available for Description

Open
new
source-only
source-and-GP

Opens the class list view. For more information, see List Views

List
new
source-only
source-and-GP

Opens the program editor in read-only state with the internal source format
of the current class structure.

Cat
source-only
source-and-GP

Catalogs the current class.

Save
new
source-only
source-and-GP

Saves the current class structure in the given class module.

Save As
new
source-only
source-and-GP

Saves the current class structure in a new Natural module.

Stow
new
source-only
source-and-GP

Stows the current class structure in the given class module.

New ODA
new
source-only
source-and-GP

Creates a new object data area for the class.

Copyright © Software AG 2002136

Class BuilderClass Nodes

Command available for Description

New Interface
new
source-only
source-and-GP

Creates a new interface for the class.

New Interface
Module

new
source-only
source-and-GP

Creates a new interface module. This interface module is linked to the class.

Link LDA
new
source-only
source-and-GP

Uses an existing data area as GUID LDA for the class. See Link.

Link ODA
new
source-only
source-and-GP

Uses an existing data area as ODA for the class. See Link.

Link Interface
Module

new
source-only
source-and-GP

Uses an existing copycode as interface module for the class. All interfaces
defined in the Interface Module will be included in the class. See Link.

Register source-and-GP
Registers the class in the system registry. For more information, see the
NaturalX documentation.

Unregister source-and-GP
Unregisters the class from the system registry. For more information, see the
NaturalX documentation.

Rename
new
source-only
source-and-GP

Changes either the class name or the class module name depending on the
current view of the library workspace. For more information, see Renaming
Class Members.

Delete
new
source-only
source-and-GP

Deletes the Natural module of the class (for source-only and source-and-GP)
or only the internal structure of the class (new).

Restore
source-only
source-and-GP

Removes all changes of the class which have not yet been saved. This
command will close all list views of the class and collapse the class node in
the library workspace.

Cut
source-only
source-and-GP

Cuts the class module.

Copy
source-only
source-and-GP

Copies the class module.

Paste
source-only
source-and-GP

Pastes the class module.

Print
new
source-only
source-and-GP

Prints the source format of the current class structure.

Properties
new
source-only
source-and-GP

Opens the Properties dialog which shows class-specific information. For
more information, see Node Properties.

137Copyright © Software AG 2002

Class NodesClass Builder

Object Data Nodes

An object data node represents an object data area module or an inline object data definition. A class can have
several object data nodes. If more than one object data node exists, you must take care to follow the correct
object data sequence when you use these nodes in method implementations.

Types

Data Area

This type indicates that the object data is defined in a separate Natural module of type local data area or
parameter data area. The name which is displayed in the node is the name of the Natural data area module.

Inline Data Definition

This type indicates that the object data is defined direct in the class source with a DEFINE DATA OBJECT
statement. In this case, the object data has to be defined again in every method implementation which uses the
object data. A node of this type is always named "Inline".

Commands

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit
inline data
definition

Opens a dialog which shows the contents of the inline data definition for editing.

List data area Lists the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area
Unlinks the data area module from the class, i.e. it is no longer used as Object
Data Area for the class.

Rename data area
Renames the Object Data Area link, i.e. uses another data area module as Object
Data Area for the class. For more information, see Renaming Class Members.

Delete
inline data
definition

Deletes the inline data definition from the class.

Print data area Prints the data area module.

Properties
data area
inline data
definition

Opens the Properties dialog which shows object data-specific information. For
more information, see Node Properties.

Copyright © Software AG 2002138

Class BuilderObject Data Nodes

GUID Local Data Nodes

An GUID Local Data node represents a local data area module or an inline local data definition which contains
GUID definitions. A class can have several local data nodes.

Types

Data Area

This type indicates that the GUID local data is defined in a separate Natural module of type local data area or
parameter data area. The name which is displayed in the node is the name of the Natural data area module.

Inline Data Definition

This type indicates that the GUID local data is defined direct in the class source with a DEFINE DATA LOCAL
statement. A node of this type is always named "Inline".

Commands

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit
inline data
definition

Opens a dialog which shows the contents of the inline data definition for editing.

List data area Lists the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area
Unlinks the data area module from the class, i.e. the data area module is no longer
used as GUID Local Data Area for the class.

Rename data area
Renames the GUID Local Data Area link, i.e. uses another data area module as
GUID Local Data Area for the class. For more information, see Renaming Class
Members.

Delete
inline data
definition

Deletes the inline data definition from the class.

Print data area Prints the data area module.

Properties
data area
inline data
definition

Opens the Properties dialog which shows local data-specific information. For
more information, see Node Properties.

139Copyright © Software AG 2002

GUID Local Data NodesClass Builder

Interface Module Nodes

An Interface Module node represents an interface module. The interface module is a Natural module of type
copycode which defines interfaces that can be included in several classes. For more information about interface
modules and their usage, see Using Interfaces from several Classes.

Commands

Command Description

Open Opens the interface module list view. For more information, see List View.

List
Opens the program editor in read-only state with the source format of the current Interface
Module structure.

Save Saves the current Interface Module structure in the given Natural copycode module.

New
Interface

Creates a new interface in the Interface Module.

Unlink
Unlinks the Interface Module from the class, i.e. the interfaces defined in the Interface Module
are no longer available in the class.

Print Prints the source format of the current Interface Module structure.

Properties
Opens the Properties dialog which shows Interface Module-specific information. For more
information, see Node Properties.

Copyright © Software AG 2002140

Class BuilderGUID Local Data Nodes

Interface Nodes

An interface node represents an interface of an interface module or a class. For more information about internal
and external interfaces, see Using Interfaces from several Classes.

Types

Internal

The parent of an internal interface is either an interface module or a class. If its parent is an interface module,
this means that the interface is defined in the interface module which is used by the class. In this case, the
interface will be displayed a second time as an external interface of the class (For more information, see Using
Interfaces from several Classes). If the internal interface is a child of the class itself, this means that the interface
is defined direct in the class.

External

An external interface can appear only as sub-node of a class, which uses an interface module which defines this
interface. The commands which can be executed on an external interface node are only a subset of the
commands available for an internal interface. Basically you can only change the implementation of such an
interface. For more information, see Using Interfaces from several Classes.

Commands

Command
available for

Description

Open
internal
external

Opens the interface list view. For more information, see List View.

New
Method

internal Creates a new method for the interface.

New
Property

internal Creates a new property for the interface.

Rename internal Renames the interface. For more information, see Renaming Class Members.

Delete internal Deletes the interface and all its dependent components.

Properties
internal
external

Opens the Properties dialog which shows interface-specific information. For
more information, see Node Properties.

141Copyright © Software AG 2002

Interface NodesClass Builder

Property Nodes

A property node represents a property of an internal or external interface.

Types

Internal

If a property appears as sub-node of an internal interface, it will be displayed as internal property. An internal
property node always has a dedicated external property node.

External

If a property appears as sub-node of an external interface, it will be displayed as external property. The
commands which can be executed on an external property are only a subset of the commands which are available
for internal properties.

Commands

Command
available
for

Description

Rename internal Renames the property. For more information, see Renaming Class Members.

Delete internal Deletes the property.

Properties
internal
external

Opens the Properties dialog which shows property-specific information. For more
information, see Node Properties.

Copyright © Software AG 2002142

Class BuilderProperty Nodes

Method Nodes

A method node represents a method of an internal or external interface.

Types

Internal

If a method appears as sub-node of an internal interface, it will be displayed as an internal method. An internal
method node always has a dedicated external method node.

External

If a method appears as sub-node of an external interface, it will be displayed as external method. The commands
which can be executed on an external method are only a subset of the commands which are available for internal
methods.

Commands

Command
available
for

Description

New PDA internal Creates a new method parameter data area for the method.

Link PDA internal Uses an existing parameter data area as method PDA. See Link.

Link
implementation

internal
external

Uses an existing subprogram as method implementation. See Link.

Rename internal Renames the method. For more information, see Renaming Class Members.

Delete internal Deletes the method and all its dependent components.

Properties
internal
external

Opens the Properties dialog which shows method-specific information. For
more information, see Node Properties.

143Copyright © Software AG 2002

Method NodesClass Builder

Method Implementation Nodes

A method implementation node represents the Natural subprogram which is executed when the method is called.

Commands

Command Description

Open Opens the subprogram of the method implementation in the program editor.

List Lists the subprogram of the method implementation in read-only mode in the program editor.

Cat Catalogs the subprogram of the method implementation.

Stow Stows the subprogram of the method implementation.

Rename
Renames the method implementation, i.e. uses another subprogram for the method
implementation. For more information, see Renaming Class Members.

Print Prints the subprogram of the method implementation.

Properties
Opens the Properties dialog which shows method implementation-specific information. For more
information, see Node Properties.

Copyright © Software AG 2002144

Class BuilderMethod Implementation Nodes

Method Parameter Data Nodes

A method parameter data node represents a parameter data area module or an inline parameter data definition. A
method can have several method parameter data nodes, which define the parameter used by the method
implementation. If more than one method parameter data node exists, you must ensure that the correct parameter
data sequence is used in method implementations.

Types

Data Area

This type indicates that the method parameter data is defined in a separate Natural module of type parameter data
area. The name which is displayed in the node is the name of the Natural parameter data area module.

145Copyright © Software AG 2002

Method Parameter Data NodesClass Builder

Inline Data Definition

This type indicates that the method parameter data is defined direct in the class source (or interface module
source) with a DEFINE DATA PARAMETER statement. In this case, the parameter data must be defined again
in every method subprogram. A node of this type is always named "Inline".

Commands

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit
inline data
definition

Opens a dialog which shows the contents of the inline data definition for editing..

List data area Shows the listing of the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area
Unlinks the data area module from the method, i.e. the data area module is no
longer used as parameter data area for the method.

Rename data area
Renames the method parameter data area link, i.e. uses another data area module
as parameter data area for the method. For more information, see Renaming Class
Members.

Delete
inline data
definition

Deletes the inline data definition.

Print data area Prints the data area module.

Properties
data area
inline data
definition

Opens the Properties dialog which shows method parameter data-specific
information. For more information, see Node Properties.

Copyright © Software AG 2002146

Class BuilderMethod Parameter Data Nodes

Node Properties
The Class Builder provides node-specific information on Natural classes and their elements if context-menu
entry "Properties" is chosen. This context-menu entry is available if an object is selected in the library workspace
or in a list view. The property sheet provides no information on group nodes.

The information itself is presented in a property sheet. The actual number of property pages shown depends on
the type of the selected object.

OK Accept modifications.
Cancel Skip modifications.

For all class elements, property pages "General" and "Comment" are available. The other property pages depend
on the selected node type.

General

This property page shows general information on the selected object. Its contents vary with the corresponding
type of node and are described in the following sections.

147Copyright © Software AG 2002

Node PropertiesClass Builder

Class

Name Class Name

Defined in Class Module

Library Library

Object and Local Data Area

Name Name of Object or Local Data Area

Used in Class Name

Library Library

Inline Data Definition

Name "Inline Definition"

Defined in Class Name

Interface Module

Name Name of Interface Module

Used in Class Name

Library Library

Interface

Name Name of Interface

Defined in Class Name

Interface Module If the interface is defined in an interface module this field shows the corresponding name.

Method

Name Name of Method

Defined in Name of the interface that offers this method.

Interface Module If the method is defined in an interface module this field shows the corresponding name.

Copyright © Software AG 2002148

Class BuilderGeneral

Implementation

Name Name of Subprogram

Used in Name of the method that is implemented by this subprogram.

Library Library

Parameter Data Area

Name Name of Parameter Area

Used in Name of Method

Library Library

Property

Name Name of Property

Defined in Name of the interface that offers this property.

Interface Module If the property is defined in an interface module this field shows the corresponding name.

149Copyright © Software AG 2002

GeneralClass Builder

Comments

Each component has its own comment.
This property page shows the comment and allows adding new or modifying existing comments. They are
entered and listed without any special syntactic notation.

The comment is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves the comment
unchanged.

Copyright © Software AG 2002150

Class BuilderComments

Identification

This property page is available for class and interface nodes. For interfaces, the list box below is only enabled if
the interface is defined direct as part of the class. The list box is not visible if the interface is defined in an
interface module.

The upper control "Unique ID" shows the current Global Unique ID of a class or an interface as read-only
information.

This list box offers all data variables contained in local data areas that are linked to the class. These variables can
be used as unique identifiers. Inline definitions of variables are not supported.

To exchange the current Global Unique ID that is displayed in the upper control with another value, select a
variable from the list. The name control is then updated with the newly selected variable name. The Global
Unique ID is exchanged if a variable has been selected and the property sheet is left by pressing "OK". Pressing
"Cancel" leaves the identification unchanged. There is no check whether a selected variable represents a valid
Global Unique ID .

151Copyright © Software AG 2002

IdentificationClass Builder

Settings

This property page is available for class nodes only. It allows setting the class"s activation policy within the
Class Builder.

A class"s activation policy can be

External Single
Internal Multiple
External Multiple

Or it is set to default.

More information on the meaning of these values can be found in the NaturalX documentation.

To change the current activation policy select the required value.
The value is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves the identification
unchanged.

Copyright © Software AG 2002152

Class BuilderSettings

Definition

This property page is available for properties of interfaces only. It allows modifying the definition of an existing
property.

The property"s name cannot be changed. The following changes are possible:

An Object Data Variable can be assigned to the property.
The available Object Data Variables are listed in the page"s list box together with their format definition
and dimension.
They are taken from the Object Data Areas that are linked to the current class. Inline definitions of variables
are not supported.
Existing assignments of Object Data Variables to properties can be changed. The corresponding control is
then updated with the newly selected variable"s name.
The property"s format definition can be added or changed if it is different from the Object Data Variable"s
definition.
Otherwise format and length definition are taken from the assigned Object Data Variable.
It can be defined whether this property is used read only.

The definition of the property is changed if the property sheet is left by pressing "OK". Pressing "Cancel" leaves
the definition unchanged.

153Copyright © Software AG 2002

DefinitionClass Builder

Adding Class Components
To make the development of a class more comfortable the Class Builder offers two ways to add components to a
class.

Link

Existing Natural objects can be linked to a class component.
If context menu item "Link" is activated for an object node a dialog is opened. It lists all objects of the required
type that can be found in the current library or its steplibs.

If an object has been selected and the dialog is left by pressing "OK", a reference to the selected object is added
to the class structure. "Cancel" leaves the class structure unchanged.

Link to Class

A GUID Local Data Area, an Object Data Area or an Interface Module can be linked to a class. The dialog
shows object name and library.

Link to Method

Each method requires a method implementation. The existing implementation can be exchanged by linking
another subprogram to a selected method. Moreover, one or more Parameter Data Areas can be linked to a
method. The dialog shows object name and library.

Copyright © Software AG 2002154

Class BuilderAdding Class Components

New

New class components are created with context menu item "New".

In the library workspace, class components are created using in-place editing. List views use dialogs to query the
necessary data and create new objects. This applies to all nodes apart from class properties: They are always
created using a dialog.

The following sections describe how the different class components are created.

New Class

A new class is first created as an internal class structure. At this time the class name is defined. The class module
name, i.e. the name of the actual Natural object, is assigned when the class is saved the first time.

Library Workspace

A new class name, for example NEWCLS, is generated. The corresponding tree node is selected and made
available for in-place editing. The name can be changed to any valid class name.

155Copyright © Software AG 2002

NewClass Builder

List View

A dialog is opened that asks for the name of the new class.

Copyright © Software AG 2002156

Class BuilderNew Class

New Object Data Area

Creating a new object data area adds a reference to a new component to the class structure. The corresponding
Natural object is not yet created. It is created if you confirm such when you open it.

Library Workspace

A new object data area, for example NEWODA, is generated. The corresponding node is selected and is made
available for in-place editing. The name can be changed to any valid data area name.

List View

A dialog is opened that asks for the name of the new object data area.

New Interface Module

Creating a new interface module adds a reference to a new component to the class structure. The corresponding
Natural object is not yet created. It is created if it contains interfaces at the time the class is saved.

Library Workspace

A new interface module, for example NEWEIF, is generated. The corresponding node is selected and is made
available for in-place editing. The name can be changed to any valid copycode name.

List View

A dialog is opened that asks for the name of the interface module.

New Interface

Library Workspace

A new interface, for example NEWIIF, is generated. The corresponding node is selected and is made available
for in-place editing. The name can be changed to any valid interface name.

List View

A dialog is opened that asks for the name of the interface.

157Copyright © Software AG 2002

New Object Data AreaClass Builder

New Method

Library Workspace

A new method, for example NEWMET, is generated. The corresponding node is selected and is made available
for in-place editing. The name can be changed to any valid method name. The new method name is also taken as
the name of the method implementation. Both are added to the class structure. If the method name is longer than
a valid Natural subprogram name, only the first characters are used to guarantee a valid implementation name.

List View

A dialog is opened that asks for the name of the method. The new method name is also taken as the name of the
method implementation. Both are added to the class structure. If the method name is longer than a valid Natural
subprogram name the first characters are used to guarantee a valid implementation name.

New Property

New properties are always created using a dialog.

Copyright © Software AG 2002158

Class BuilderNew Method

This dialog retrieves the following information:

Property
name:

A valid property name. This is either a new name or the name of the selected ODA variable.
For fully qualified ODA variable names the dot is replaced by an underscore.

ODA
variable:

The list box lists all variables that are defined in the linked ODAs.
If property name, format and length are not changed, these values are taken from the selected
ODA variable.

Format:
Format and length can be changed if they must be different from the ODA variable"s
definitions.

Read-Only: The property can be marked as read-only.

159Copyright © Software AG 2002

New PropertyClass Builder

Renaming Class Components
Like any other Natural object that can be modified in the Natural Studio, the components of a class are renamed
by editing their identifier in place. This is done using the mouse or by pressing F2 or by choosing context menu
entry "Rename" which is enabled for every class component.

During the edit process the new name is checked for syntactical correctness. If it is not a valid Natural name the
edit mode cannot be left. Pressing ESCAPE cancels the edit mode and resets the old identifier.

If class components refer to Natural objects such as Object Data Areas, Parameter Data Areas or Interface
Modules, only the references within the class are changed. The corresponding Natural objects are not renamed.
They have to be changed explicitly if required.

Copyright © Software AG 2002160

Class BuilderRenaming Class Components

Removing Class Components

Unlink

Context menu entry "Unlink" is available for class components that refer to Natural objects like Data Areas or
Interface Modules. If these modules have been linked to a class previously they can be removed using "Unlink".

This action only removes the reference to selected components from the class. It does not delete an existing
Natural object.

161Copyright © Software AG 2002

Removing Class ComponentsClass Builder

Delete

Context menu entry "Delete" is available for classes and those of their components that do not refer to Natural
objects.

If this context menu item is selected, a dialog is displayed.
It displays the name of the selected component in a read-only field together with a list of references that shows
the dependent Natural objects. These objects are identified by name, library and Natural object type if required.
The list serves for information purposes only. The dependent Natural sources are not affected.

If the selected component is the class itself, the internal structure is deleted and the corresponding Natural source
and cataloged modules are removed from the library.

OK
Closes the dialog and deletes the selected component.
If the selected component is the class itself, the internal structure is deleted and the Natural source
and GP objects are removed from the library. The referenced Natural objects are not deleted.

CANCEL Closes the dialog without deleting anything.

Copyright © Software AG 2002162

Class BuilderDelete

Editing Class Components

Classes

At the time a new class is created, the corresponding new class module is not yet created. This occurs only if
"Save", "Save As" or "Stow" is called for the class.

Save

"Save" called for an existing class writes the class source to the class module.
If "Save" is called for a new class that does not yet have a corresponding class module then "Save" is treated like
"Save As...". If such a class module does not yet exist in the current library, the class module is created and the
source is written to this object.

Save As

If "Save As..." is called, a dialog is opened that prompts for the class module. The input length is restricted to
guarantee a valid Natural class module name and the input is checked for validity. If such a class module does
already exist or if the name is invalid, an error message is issued.

Cat

If the command "Cat" is called, the class source is cataloged and a corresponding class GP is generated. This
does not apply to new classes.

Stow

As for other Natural objects "Stow" internally saves and catalogs a class. If a new class is to be stowed, you are
prompted for the class module as described for "Save As".

Natural Objects

Natural objects that can act as class components can also be modified in the context of the class structure.
References to Object Data Areas, Parameter Data Areas and Interface Modules can be created by "New".
Existing objects can be edited, saved and stowed.
Local Data Areas and method implementations cannot be created in the class"s context. Here only existing
objects can be linked to the class. But they can be edited, saved and stowed.

Other Class Components

Other class components such as interfaces, methods and properties cannot be saved, cataloged or stowed
independently. They can only be modified in the context of a class.

163Copyright © Software AG 2002

Editing Class ComponentsClass Builder

Using Interfaces from Several Classes
For some applications, it is useful to implement the same interface in several classes. For this purpose, it is
possible to define the interface in a Natural copycode module and include this copycode module in the class
which wants to implement the interface. The implementation-specific settings, like method implementations, can
be defined in the copycode as a default setting, and they can be overwritten in the class, to use class specific
implementations.
Natural copycode modules which define interfaces are called Interface Modules in the Class Builder
environment. Interface Modules are fully integrated in the Class Builder, so that interfaces defined in an
Interface Module can be handled in the same way as interfaces of a class. However, an Interface Module can
only be changed with the Class Builder when it is included from a class.

Interfaces which are defined in an Interface Module are always visible in two places of a class: they are shown as
an internal interface under the Interface Module node and they are shown as an external interface under the class
node. The commands available for an external interface can be used to change the implementation of the
interface.

You can save a changed Interface Module without saving the whole class. If an Interface Module is changed and
the class which is the parent of the Interface Module node is saved, the Class Builder asks the user if he wants to
save the Interface Module as well.

The locking principles for Interface Modules are described in Locking Concept.

Note: If you change an Interface Module, you should always be aware that this Interface Module can also be
used by other classes. After saving the changes other classes can possibly no longer be stowed without errors.
The Class Builder cannot check if your Interface Module is used by other classes!

Creating a new Interface Module

The class command "New Interface Module" (see Class Builder Nodes) creates a new Interface Module.
An Interface Module node is added in the tree and list views and you can then create new interfaces for the
Interface Module, methods and properties for the interfaces and so on. If a new component is created for the
Interface Module, the corresponding external node will be added for the class. For example, if a new interface
INT1 as added to the Interface Module, an external interface node named INT1 will be created as sub-node of
the class. The new Interface Module is saved just as an existing Interface Module. As soon as the Interface
Module exists as Natural module, it can be linked from other classes.

Copyright © Software AG 2002164

Class BuilderUsing Interfaces from Several Classes

Linking an existing Interface Module

The class command "Link Interface Module" (see Class Builder Nodes) uses an existing Interface Module for the
class. A dialog is shown which lists all Natural copycode modules of the current step libraries (Note: the dialog
will list all copycode modules and not only the Interface Modules). If you select a copycode module from this
list which defines class interfaces, these interfaces are added to the current class interfaces. An error will be
generated if you select a copycode module which does not define interfaces or if the selected copycode module
contains an interface which is already defined in the class. In this case, the Interface Module is not linked to the
class.

If the Interface Module was linked successfully to the class, a node for it will be added to the class tree. Opening
the Interface Module node will show the interfaces of the Interface Module. Furthermore all interfaces of the
Interface Module are added as external interfaces nodes to the class itself.

165Copyright © Software AG 2002

Linking an existing Interface ModuleClass Builder

Unlinking an Interface Module

If the "Unlink" command (see Interface Module Nodes) is executed for an Interface Module, the interfaces of
this Interface Module are no longer used by the class.
This has the effect that the Interface Module node itself and all external interface nodes from this Interface
Module are removed from the class.

Note:
If you unlink an Interface Module from a class, all class-specific settings contained in the class source module,
such as method implementations for the interfaces of this Interface Module, will be deleted as well.

Interface Nodes

If an Interface Module is used by a class, every interface defined in the Interface Module is represented by two
nodes: an internal interface node which is a sub-node of the Interface Module and an external interface node
which is a sub-node of the class. These two interface node types can be distinguished by their icon (see Interface
Nodes). The same is of course valid for the property and method nodes: if they are children of an internal
interface, they are represented by an internal node and if they are children of an external interface, they are
represented by an external node (see Property Nodes and Method Nodes).
Furthermore the commands which can be executed on external interfaces, properties and methods are only a
subset of the commands available on internal interfaces, properties and methods. For example, the name of an
interface can only be changed for an internal interface. External interfaces allow only the redefinition of the
implementation of the interface, i.e. changing the method implementation and the ODA variable which is
assigned to a property.

Copyright © Software AG 2002166

Class BuilderUnlinking an Interface Module

Locking Concept
Natural must ensure that a Natural module cannot be changed at the same time from different places. Therefore,
related to the Class Builder, this means that a Natural user must be prevented from changing a Natural module
with the program editor which has already been changed with the Class Builder and vice versa.
The Class Builder can be used to change Natural classes and Interface Modules which are special copycode
modules (see Using Interfaces from several Classes).
Because of the different requirements, the locking concept for classes differs from the Interface Module locking
concept. In the following sections both concepts are described.

Locking of Classes

The locking of classes is done very flexibly. The Class Builder does not lock a class until it is changed. This
means that a class which is opened with the Class Builder can be opened in the program editor as well.
If a class is opened in the program editor, the class nodes can be viewed in the Class Builder, but it is not
possible to apply any changes. Before changing the class, the program editor session has to be closed first.
If a class is visible in the Class Builder and the user changed the class in the program editor, the changes will
also be shown in the Class Builder when the class is saved. If a class has been changed with the Class Builder it
is no longer possible to open this class with the program editor.

Locking of Interface Modules

The locking of Interface Modules is a bit more restrictive than the locking of classes. A two stage locking exists
for the Interface Modules. For the first time the Class Builder must ensure that the Interface Module cannot be
changed with the Class Builder and the program editor at the same time: if a class which uses an Interface
Module is opened in the Class Builder, the Interface Module is locked. This means on the one hand, that an
Interface Module can no longer be opened with the program editor, when a class which uses it is opened in the
Class Builder. On the other hand, a class cannot be opened with the Class Builder when it uses an Interface
Module which is already open in the program editor.
Moreover, an Interface Module can be opened several times in the Class Builder if it is included from several
classes. The Class Builder must ensure that an Interface Module is opened only once, when the user wants to
change it, because the other Interface Module instances are then no longer up-to-date: it will try to close all other
instances, to make sure that only the current instance of the Interface Module remains visible. The Class Builder
will display a confirmation dialog for this purpose which allows the user to stop the process.
If one of the classes was already changed, the user will be asked, if the changes are to be saved . After saving a
changed Interface Module, it is again possible to open other classes which use the Interface Module.

167Copyright © Software AG 2002

Locking ConceptClass Builder

Tutorial
This chapter provides a short introduction on the usage of the Class Builder.
The example shows how class EMPLOYEE in library SYSEXCOM can be built using the Class Builder.

New class

Activate the logical view in the library workspace and create a new library MYEXCOM that contains the local
data areas EMPGUIDS and EMPLOY-O. These are just copies of the objects in SYSEXCOM.
EMPGUIDS contains GUID definitions and EMPLOY-O contains object data definitions. To create a new class
MYEMPLOYEE select the library node and then select context menu item "New > Class". A new tree node
labeled "NEWCLS" is presented for in-place editing. Just change its name to "MYEMPLOYEE".

Linking Object Data

The object data for MYEMPLOYEE have to be defined in an object data area. This object data area can either be
created by selecting context menu item "New" of node "MYEMPLOYEE" or by linking an existing object data
area via context menu item "Link > Object Data Area...".
A dialog pops up and shows a list of all local and parameter data areas in MYEXCOM and its steplibs. These
objects can be used as object data areas. Select EMPLOY-O.

Copyright © Software AG 2002168

Class BuilderTutorial

Creating an Interface

To create the first interface select context menu item "New > Interface" of node "MYEMPLOYEE". A new tree
node labeled "NEWIIF" is presented for in-place editing. Just change its name to "EMPLOY-I". Further
interfaces can be created accordingly or by selecting "New" in the context menu for "Interfaces" (group node).

Creating Methods

To create the first method select context menu item "New > Method" of interface node "EMPLOY-I". A new
tree node labeled "NEWMET" is presented for in-place editing. Rename this node to "INIT". A method
implementation node with the same name is created automatically.
To use subprogram ELOAD-N (copied from SYSEXCOM) to implement this method, select the method"s
context-menu item "Link > Implementation..." and change the method implementation.
Parameter Data Area ELOAD-A (copied from SYSEXCOM) can be linked using "Link > Parameter Data
Area..." and then selecting the appropriate module. Further methods can be created accordingly or by selecting
"New" in the "Methods" (group node) context menu.

Creating Properties

To create the first property, select context-menu item "New > Property..." of interface node "EMPLOY-I". The
dialog lists all object data variables that are defined in linked object data areas and can be assigned to a property.
They are shown together with their format and length definition and dimension. If one of these variables is
selected without entering any information in the other control, this variable name is taken as property name and
format and length definition are generated accordingly.
But the Class Builder allows assigning the property another name and format and length can be adapted as long
as the new format is data-transfer compatible (see the NaturalX documentation). The new property can be
marked as read only.

Using an Interface Module

So far class MYEMPLOYEE only defines interfaces internally. But there might be interfaces defined in modules
that were adequate to incorporate.
For this purpose an interface module can be linked using the Class"s context-menu item "Link > Interface
Module...". The interfaces that are defined in this module are then inserted under the corresponding interface
module in group "Interface Modules" and at the same time under the group node "Interfaces". To implement
their methods, select the corresponding node that can be found under "Interfaces".

169Copyright © Software AG 2002

Creating an InterfaceClass Builder

Linking a GUID Local Data Area

The Class Builder generates Global Unique IDs for classes and interfaces automatically. But if variables are to
be used instead of the generated identifiers, a local data area with the corresponding definition can be linked to
MYEMPLOYEE.
The existing Global Unique ID of MYEMPLOYEE can then be changed. Select context menu item "Properties"
and activate page "Identifiers". This page is available for classes and interfaces.

The generated GUID is displayed in the upper control. Local variables that are defined in EMPGUIDS are listed
in the lower box. Select EMPGUID and leave the property sheet with OK.

Activation Policy

The Class Builder allows setting a class"s activation policy explicitly. The current activation policy of
MYEMPLOYEE can be viewed under "Settings" if context menu item "Properties" is selected. This option is
available for classes only. Select "External Multiple" and leave the property sheet with OK.

Copyright © Software AG 2002170

Class BuilderLinking a GUID Local Data Area

Save and Stow Class

Up to now the new class MYEMPLOYEE has only existed as an internal class structure. To save all changes the
class can be saved and stowed in the class module. This change of state is indicated by the changed icon.

Register

And finally register MYEMPLOYEE by selecting context menu item "Register" on the class node.

171Copyright © Software AG 2002

Save and Stow ClassClass Builder

Glossary

External Interface

An external interface is an interface which is defined in an interface module, that is included by the class.

Interface Module

An Interface Module is a Natural copycode module which defines interfaces. The Interface Module can be used
in a class to define the contained interfaces. The class can overwrite the method and property implementations,
but all other settings of the interface are used as defined in the Interface Module.

Internal Interface

An internal interface is an interface which is defined direct in the class, or an interface of an Interface Module,
which is defined in the Interface Module.

Method Implementation

A method implementation is a Natural subprogram which is assigned to the method and executed when this
method is called for a class object.

Property Implementation

A property implementation is the object data variable that is assigned to a property.

Copyright © Software AG 2002172

Class BuilderGlossary

Program Editor
You use the program editor to write and maintain Natural programs, subprograms, subroutines, classes,
copycode, helproutines and text elements. You can open multiple editing sessions, making it possible to copy or
move content from one object to another. The title bar of each editing session displays the name and type of the
object. If the object is new and has not yet been saved, it is automatically given the title "Untitled".

The following topics are covered below

Modifying Program Contents
Finding Source Contents
Editing/Listing Referenced Natural Objects
Splitting the Editor Window
Expanding/Collapsing Object Listings
Recording/Replaying Keystrokes
Using Context-Sensitive Help
Setting Editor Options

See also:

Program Editor Accelerators
Renumbering of Source-Code Line Number References

Modifying Program Contents
Selecting Text
Copying Text
Cutting Text
Pasting Text
Deleting Text
Undoing/Redoing Text Changes
Renumbering a Program

Selecting Text

 To select a single word using the mouse

Double-click the word.

 To select a range of text using the mouse

1. Point to the first character to be selected.
2. Drag the cursor to the last character you want to select.
3. Release the mouse button.

 To select text using the keyboard

1. With the arrow keys, move the selection cursor to the first character to be selected.
2. Press and hold down SHIFT and use the arrow keys to select the text.

173Copyright © Software AG 2002

Program EditorProgram Editor

 To select the entire editor contents

From the Edit menu, choose Select all.

 To cancel a mouse selection

Click anywhere in the document.

 To cancel a keyboard selection

Press an arrow key.

Copying Text

Text can be copied within the same object or between two different objects.

 To copy text

1. Select the text using the instructions provided in Selecting Text.
2. From the Edit menu, choose Copy.

Or click the Copy toolbar button.
Or press CTRL+C .
The text is copied to the clipboard and can now be pasted within the same object or another object. For
instructions on pasting text, see Pasting Text.

Cutting Text

The cut function can be used to delete text from an object or to move text within/between objects. When text is
cut, it is taken from the object and placed on the clipboard. It remains there until the next cut or copy operation is
performed, at which time it is irretrievably discarded from the clipboard to make way for the next cut/copied
text.

It is possible to revoke a cutting operation after it has been performed. See Undoing/Redoing Text Changes.

 To cut text

1. Select the text using the instructions provided in Selecting Text.

From the Edit menu, choose Cut.
Or click the Cut toolbar button.
Or press CTRL+X .
The text is cut to the clipboard and can now be pasted within the same object or another object. For instructions
on pasting text, see Pasting Text.

Copyright © Software AG 2002174

Program EditorCopying Text

Pasting Text

The paste function is used to place text at a specific position within an editor after it has been copied or cut to the
clipboard from another position within the same object or another object. A text which has been copied or cut to
the clipboard can be pasted repeatedly without recopying it.

It is possible to revoke a paste operation after it has been performed. See Undoing/Redoing Text Changes.

 To paste text

1. Copy or cut a portion of text as described in Copying Text and Cutting Text.
2. Select with the I-beam pointer the position in the text where the text is to be inserted.
3. From the Edit menu, choose Paste.

Or click the Paste toolbar button.
Or press CTRL+V .
The text is pasted to the object.

4. To paste the same text again, repeat Steps 2 and 3.

Deleting Text

When text is deleted, it is cut from the object but is not placed on the clipboard. The only way to recover deleted
text is by undoing the deletion. See Undoing/Redoing Text Changes. Note that when text is deleted in the
program editor, no warning is provided. This is intentional.

 To delete text

1. Select the text using the instructions provided in Selecting Text.
2. From the Edit menu, choose Delete.

Or click the Delete toolbar button.
Or press DEL .

The text is deleted.

175Copyright © Software AG 2002

Pasting TextProgram Editor

Undoing/Redoing Text Changes

The text operations you perform in the program editor can be revoked by applying the undo function or
reinstated (after being undone) by applying the redo function. Typical operations which can be undone/redone
are character input, character deletion, text deletion, text pasting, search/replace, or any action which modifies
editor contents. The number of operations which can be undone/redone is determined by the value specified in
the preferences for the program editor and is limited by the memory allocated (for more information, see Setting
Editor Options).

The commands SAVE, CLOSE and CLEAR cause the undo/redo buffer to be cleared of its contents. A
successful STOW also clears the buffer of its contents.

Undo / redo operations restore line numbering to its status before the operation.

 To undo a text operation

From the Edit menu, choose Undo.
Or press CTRL+Z .
Or click the Undo toolbar button.
The text is restored to its condition before the previous text operation or redo operation.

 To redo a text operation which has been undone using an undo operation

From the Edit menu, choose Redo.
Or press CTRL+Y .
Or click the Redo toolbar button.
The text is restored to its condition before the previous undo operation.

Renumbering a Program

As you add lines to a program, Natural numbers the added lines in increments of one. You never have to worry
about two lines being assigned the same number. Natural recognizes such conditions and renumbers the program
accordingly.

You can renumber a program at any time during an editing session. Every line of the object is renumbered,
beginning with 0010 at the first line and increasing by increments of ten for each line.

 To renumber a program

From the Edit menu, choose Renumber.
Or, in the command line, type "Renumber" and press ENTER.
The program is renumbered.

Copyright © Software AG 2002176

Program EditorUndoing/Redoing Text Changes

Finding Source Contents
Searching for Source Text

In large objects, it is often difficult to locate a section of source code. Using the search function, you can flexibly
search for any character string in source listings. If it should be necessary to replace a frequently occurring text
string with another, you can use the combined search and replace function.

Searching for Source Text

 To search for a text string in the active program window

1. From the Edit menu, choose Find.
Or click the Find toolbar button.
Or press CTRL+F .
The "Find" dialog box appears.

2. In the "Find" text box, enter the string to be searched for.
3. If you want the search to be case sensitive, select the "Case Sensitive" check box.

The search will then only find the string exactly as it appears in the "Find" text box, otherwise both upper
case and lower case occurrences of the string will be found.

4. If you want the search string to be found as a whole word only and not as part of other words, select the
"Whole Words Only" text box.
If this box is left unselected, all occurrences of the string will be found.

5. If the search is being performed on an object listing, then the "Exclude collapsed blocks" check box is
displayed. Select the check box to exclude collapsed blocks of source code from the search; leave blank to
search the entire listing.
For more information on expanding and collapsing object listings, see Expanding/Collapsing Object
Listings.

6. In the "Direction" group frame, click the search direction up or down to specify whether the search will be
conducted from the cursor position to the end of the object or from the cursor position to the beginning of
the object. The default is "Down".

7. Choose OK .
If no instance of the text searched for is found, a corresponding message is displayed.
If an instance of the search string is found, it is displayed and selected.

 To search for additional instances of the search string in the object

From the Edit menu, choose Find Next.
Or press F3.
Alternatively, the text to find can be entered in the find combo box at the Edit toolbar.

177Copyright © Software AG 2002

Finding Source ContentsProgram Editor

Searching for and Replacing Source Text

 To search for and replace a text string in the active program window

1. From the Edit menu, choose Replace.
Or click the Replace Text toolbar button.
Or press CTRL+H .
The "Replace" dialog box appears.

2. In the "Find" text box, enter the string to be searched for.
3. In the "Replace With" text box, enter the replacement string.
4. If you want the search to be case sensitive, select the "Case Sensitive" check box.

The search will then only find the string exactly as it appears in the "Search For" text box, otherwise both
upper case and lower case occurrences of the string will be found.

5. If the search string to be found as a whole word only and not as part of other words, select the "Whole
Words Only" text box.
If this box is left unselected, all occurrences of the string will be found.

6. If you want to confirm each change, leave the "Confirm Each Change" check box selected. If you deselect
it, all instances of the search string will be converted to the replacement string without prompting you for
confirmation.

7. In the "Direction" group frame, choose the search direction up or down to specify whether the search and
replace will be conducted from the cursor position to the end of the object or from the cursor position to the
beginning of the object. The default is "Down".

8. Choose Replace.
If no instance of the text searched for is found, a corresponding message is displayed.
If an instance of the search string is found, and the "Confirm Each Change" box is marked as in Step 6, a
message box with the following pushbuttons is displayed:

Replace Replace the search string with the replacement string and continue searching.

Skip Skip to the next instance of the search string.

Cancel Interrupt the search/replace operation.

Repeat Replace

If for any reason you interrupt the search/replace operation, you can resume it at any time using the Replace Next
function.

1. To do so, from the Edit menu, choose Replace Next.
2. Or press CTRL+F3 .

Copyright © Software AG 2002178

Program EditorSearching for Source Text

Searching for a Line Number

If you know which line you are searching for, you can use the "Go To" command to display a specific line
number. In the function, you can specify whether you want to go to the numbered line or the physical line in the
editor, depending on whether the line number option is switched on or off.

If you use the "Go To" command in a source listing, and the line specified is within a collapsed block, the block
is expanded to show the desired line. For more information on expanding and collapsing object listings, see
Expanding/Collapsing Object Listings.

 To go to a specific line

1. From the Edit menu, choose Go To.
Or click the Go To toolbar button.
Or press CTRL+G .
The "Go To" dialog box appears.

2. If the line number option is turned on (program line numbers are displayed), select the Numbered line
radio button. If the line number option is turned off (program line numbers are not displayed), select
Physical line. The physical line number is the default.

3. Enter the line number to be found in the "Line Number" text box.
4. Choose Go To.

The editor scrolls to the specified line and the cursor is placed at the beginning of the line.

179Copyright © Software AG 2002

Searching for a Line NumberProgram Editor

Editing/Listing Referenced Natural Objects
While you are working in the program editor, you can open or list other Natural objects which are referenced in
the program code, assuming these objects exist. If, for example, you are editing a program that calls a
subprogram, you can open the subprogram, adapt it to the program, and return to the program.

 To edit a referenced Natural object in your program

1. Click or double-click on the object.
2. From the Program menu, choose Open Object.

Or press CTRL+O .
The editor is opened.

 To list the source code of a referenced Natural object in your program

1. Click or double-click on the object.
2. From the Program menu, choose List Object.

The source code of the object is listed.

Splitting the Editor Window
Jumping between Split Screens

You can split the program editor window vertically or horizontally to view and modify two different parts of the
object simultaneously. This feature saves you the trouble of printing a program to view two different sections
simultaneously. Changes made in one section are made simultaneously in the other section.

 To split the screen into two sections vertically or horizontally

1. From the View menu, choose Vertical split (Horizontal split).
A vertical (horizontal) line appears in the middle of the window.

2. Split the screen into two sections by moving the mouse vertically (horizontally) to the position you want
and clicking the left mouse button.
The screen is split into two sections, each displaying the same information. You can now scroll each section
individually and edit both sections as if they were part of the same object (as indeed they are).

 To exit split-editor mode and return to a single screen

From the View menu, choose Unsplit.
Two editor sections are transformed into one.

Jumping between Split Screens

 To jump between vertical/horizontal split screens

Place the mouse pointer in the screen section of your choice and click.
Or press F6.
The cursor moves from one screen section to the other.

Copyright © Software AG 2002180

Program EditorEditing/Listing Referenced Natural Objects

Expanding/Collapsing Object Listings
To improve the readability and maintainability of objects with complex program structures, you can display
logical blocks of source code in expanded or collapsed form. Moreover, each individual logical block of code in
an object can be expanded or collapsed, as required. Expandable/collapsible structures include, for example,
DEFINE DATA blocks, REPEAT blocks, IF THEN ELSE blocks and READ blocks.

This feature applies only to source code listings of Natural objects other than DDMs which are saved in
structured mode.

In the source code:

square icons with minus signs (-) indicate the beginning of a collapsible block of code.
square icons with plus signs (+) indicate the beginning of an expandable block of code.

The following topics are covered below:

Making Listings Expandable/Collapsible
Collapsing and Expanding Program Structures
Additional Information

Making Listings Expandable/Collapsible

Object listings are not displayed by default in expandable/collapsible format. You must specify in the program
editor that objects are to be listed in expandable/collapsible format. You can specify this on either session level
or object level. Session-level settings are valid for all new listings in a Natural session; temporary settings are
valid only for the active listing; they are lost once a listing is closed. If the listing is reopened, the session-level
settings are used.

Expand/Collapse: Session Level

 To set expandable/collapsible listings on a session-wide basis

1. From the Object menu, choose New and then, from the cascading menu, Program.
2. From the Tools menu, choose Options.

Or press Alt+ENTER .
In the "Options" dialog box select the tab "Program Editor"

3. Select the "Expand/Collapse" check box.
The "Open collapsed" check box is activated.

4. Select the "Open collapsed" check box if listings are to be initially displayed in collapsed format. Leave
empty to display the listings initially in expanded (normal) format.

5. Choose OK .

181Copyright © Software AG 2002

Expanding/Collapsing Object ListingsProgram Editor

Collapsing and Expanding Program Structures

When a block of object code is collapsed, all of the lines of source code between the block begin statement and
block end statement are hidden from view, including any other blocks if they are part of the chosen block.
Hidden blocks retain their collapsed or expanded status.

 To collapse a program structure

Double-click on the "-" icon marking the collapsible block of program code.
Or place the cursor in the line containing the "-" icon and, from the View menu, choose Collapse Block.
The block of code is collapsed.
When a block of object code is expanded, all of the lines of source code between the block begin statement
and block end statement are brought into view, including any other blocks if they are part of the chosen
block. Previously hidden blocks retain the collapsed or expanded status they had before they were hidden.

 To expand a program structure

Double-click on the "+" icon marking the collapsible block of program code.
Or place the cursor in the line containing the "+" icon and, from the View menu, choose Expand Block.
The block of code is expanded.

Additional Information

When searching a listed object, it is possible to exclude collapsed blocks from the search. For more information,
see Searching for Source Text.

When you are searching for a line number in a listed object which is part of a collapsed block, the block is
expanded to display the line. For more information, see Searching for a Line Number.

When you are splitting the editor window vertically or horizontally, one section can be displayed in collapsed
format while the other is displayed in expanded format. From the Options menu, just choose Expand/Collapse
for one of the window sections.

Copyright © Software AG 2002182

Program EditorCollapsing and Expanding Program Structures

Recording/Replaying Keystrokes
You use the record/replay function to record and replay keystroke sequences which you want to repeat in the
program editor. This is similar to a tape recorder with the functions record, stop, and play.

As the name implies, the keystroke recorder records and replays only input made directly from the keyboard, and
not movements or selections made with the mouse. Thus, it is only possible to record within a single program
editor window; recording in multiple program editor sessions is not possible.

 To record a keystroke sequence

1. Place the cursor at the position in the editor where you want to begin recording.
2. From the Tools menu, choose Start Recording.

Or press Ctrl+Shift+R .
3. Enter the key sequence you want to record.

Only keyboard input is recorded. Mouse movements and operations are ignored.

 To stop recording

From the Tools menu, choose Stop Recording.
Or press Ctrl+Shift+S .
Recording ends.

 To replay a recorded keystroke sequence

1. Place the cursor at the position in the editor where you want to begin replaying the recording.
2. From the Tools menu, choose Replay Recording.

Or press Ctrl+Shift+P .
The recording is replayed.

183Copyright © Software AG 2002

Recording/Replaying KeystrokesProgram Editor

Using Context-Sensitive Help
Syntax Help
Syntax Coloring

Syntax Help

Within the Natural program editor, context-sensitive help is available for the following Natural syntax elements:

Statements
System variables
System functions
Parameters (for example, the AD parameter)

 To call syntax help

Place the cursor on a keyword within a syntax element for which you require help and press F1.
Or double-click on a keyword within the syntax element and press F1.

Help for Statements

When you place the cursor on a keyword that forms part of a statement (for example, under the keyword TOP in
the statement AT TOP OF PAGE), the help system tries to identify the statement that contains the keyword.

If the result is unambiguous (that is, one complete statement is identified), help information is displayed for
that particular statement.
If a keyword is found which is used in several statements (for example, AT), a menu appears offering you a
choice of statements containing the keyword you specified.
If no complete statement can be found (for example, if you have only typed in the word DEFINE and
pressed F1 before typing out the full statement) or if the keyword is used in more than one statement, a
dialog box appears offering you a choice of all statements beginning with or containing the keyword you
specified.

Syntax Default Colors

Coloring is used in the program editor to mark various elements of syntax for better readability.

The default color assignments for Natural are:

Blue - Natural keywords
Red - Comments
Green - Text constants, system functions, system variables
Black - User-defined variables and remaining syntax elements

You can modify the color assignments. See Syntax Coloring.

Copyright © Software AG 2002184

Program EditorUsing Context-Sensitive Help

Setting Editor Options
You can set preferences for various editor options. These settings are taken as default values each time you start
the Program Editor.

 To do so

From the Tools menu, select Options and then in the options dialog select the tab "Program Editor".

Status Bar

Display the status line at the top of the editor window. For information on the status line contents, see Status Bar
Information.

Line Numbers

Show the line numbers in the program editor.

Syntax coloring

Display color-coding for program syntax elements.

On how to modify color-coding, see Syntax Coloring.

Vertical scroll bar

Display the vertical scroll bar for the editor window.

Horizontal scroll bar

Display the horizontal scroll bar for the editor window.

Tabs

Specify the column numbers for tabulator stops in the program editor. You can add or modify existing tabulator
stops in the text box.

Expand/Collapse

Enable logical blocks of code in object listings to be switched between a collapsed form and an expanded form.
This is valid, for example, for DEFINE DATA blocks, REPEAT blocks, and IF THEN ELSE blocks. This option
applies only to objects saved in structured mode. For more information on the expand/collapse functions, see
Expanding/Collapsing Object Listings.

185Copyright © Software AG 2002

Setting Editor OptionsProgram Editor

Open collapsed

Input to this check box is allowed only if the "Expand/Collapse" check box is marked. Initially display logical
blocks of code in collapsed form on listing a program.

Max. number of actions

Specify the number of text operations which can be recalled/reinstated using the undo/redo functions. Zero
signifies the maximum limit dependent only on the specified maximum memory size (see below). For more
information on the undo/redo functions, see Undoing / Redoing Text Changes.

Max. memory size

Specify the amount of buffer space available for storing text operations made in the program editor. Zero
signifies the maximum space available.

Alarm

Produce a "beep" sound when an invalid key or key combination is pressed.

Insert Alignment

Align the cursor with the first non-blank character of the previous line of text when you press ENTER or
RETURN. If there are no non-blank characters before the inserted line, the cursor is aligned with column 1.

Renumber Before Save

Renumber the lines in a program and update line number references before every save.

Copyright © Software AG 2002186

Program EditorSetting Editor Options

Syntax Coloring

Coloring is used in the program editor to mark various elements of syntax for better readability.

You can define your own colors.

 To do so

From the "Program Editor Preferences" dialog, choose "Colors".
The "Color Definition" window is displayed.
You can define the colors of text type, as for example "Keywords", "System variables", and of the edtior
window.

 To define the color of the text type

1. Select the text type in the "Text Type" drop-down list box or click on it in the sample area.
In the "Foreground" drop-down list box, select a color. (System is the color defined in Windows.)

2. In the "Background" drop-down list box, select a background color for the text. (System is the color defined
in Windows.)

3. Choose OK .

The default color assignments for Natural are:

Blue - Natural keywords
Red - Comments
Green - Text constants, system functions, system variables
Black - User-defined variables and remaining syntax elements

 To define the color of the Edit Window

1. Click anywhere in the sample area where there is no text.
"Edit Window" is displayed in the "Text Type" drop-down list box.

2. In the "Background" drop-down list box, select a color. (System is the color defined in Windows.)
3. Choose OK .

Font Definition

You can define your preferred font in the "Windows Font" definition window.

 To do so

From the "Program Editor Preferences" dialog, choose "Font".
The Windows "Font definition" window is displayed.
For further information, please refer to the Windows documentation.

Note:
Only monospaced fonts are available.

187Copyright © Software AG 2002

Syntax ColoringProgram Editor

Status Bar Information

The status line appears at the top of the window where the program is edited. It displays the following
information:

Line: x of y

x: The current cursor line position.
y: The total number of lines in the object.

Col

The current cursor column position.

Size

The total number of characters in the source code.

Structured or Report

The programming mode (structured or report) of the active object.

You can change mode to structured with the system command "GLOBALS SM=ON" or to report "GLOBALS
SM=OFF" or by selecting "Session Parameters" from the Options menu and then choosing Miscellaneous from
the cascading menu.

Modified

Indicates that the object has been modified since the last save. If "Modified" is not displayed, then the object has
not been modified since the last save.

INS or OVR

INS: Editor is in insert mode. Input does not overwrite existing text.
OVR: Editor is in overwrite mode. Input overwrites existing text.

Copyright © Software AG 2002188

Program EditorStatus Bar Information

Map Editor
You use the map editor to create and edit maps. After a map is created, you can store it in a library and invoke it
using an INPUT USING MAP statement.

Inserting Map Fields and Menus
Modifying Map Contents
Defining Fields
Defining Field Attributes
Defining an Array
Modifying Field Colors and Representation
Using Field Rules
Defining Data Areas for Maps
Testing Maps
Previewing Maps
Flipping Maps
Modifying the Map Profile
Setting Editor Options

Inserting Map Fields and Menus
A map consists of fields. You can create the following types of fields:

text constants
data fields
menus
push buttons
bitmaps
toggle buttons
radio buttons
selection boxes

Text fields and data fields correspond to the fields used in character-oriented Natural platforms (Mainframe
Natural, for example). All other field types apply only to applications with graphical user interfaces.

Note:
Map editor field types are not the same as the dialog elements with the same name used in the dialog editor.
Whereas the dialog editor’s dialog elements are identified by a handle definition in a data area, the map
editor’s fields are not defined in a data area. Each is therefore addressed differently in Natural code: the
map fields are addressed by an INPUT USING MAP statement, whereas the dialog elements are addressed
by event-driven programming features.

The procedures in this section for inserting map fields assume the use of a mouse. The keyboard equivalents are
provided in Keyboard Equivalents.

 To insert a map field

1. From the Insert menu, choose a field type.
Or click the toolbar button for the desired field type.

2. Move the mouse pointer into the editor.
The cross-hair pointer is displayed with a symbol for the selected field.

3. Position the mouse pointer at the place in the map where you want to put the field, hold down the left mouse

189Copyright © Software AG 2002

Map EditorMap Editor

button and drag the mouse to size the field (up, down, right, or left, depending on the type of field).
A box is displayed to indicate graphically the size of the field you are creating. Its actual length is displayed
in the "Len" field in the editor status line.

4. Release the mouse button.
The map field appears in the map editor. It is selected and its properties are displayed in the status line.

 To create a map menu field using the mouse

From the Insert menu, choose Menu.
Or click the Create Menu toolbar button.
If no menu has been created yet for the map, a menu bar appears at the top of the map editor with a menu
field. The menu field is selected.
If a menu has already been created for the map, then a menu field is added to the menu bar. The menu field
is selected.

For information about how to manipulate map fields once they have been created, see Modifying Map Contents.

For information about how to import variables from other Natural objects, see Importing Fields.

Copyright © Software AG 2002190

Map EditorInserting Map Fields and Menus

Modifying Map Contents
Selecting Fields
Deselecting Fields
Copying Fields
Cutting Fields
Pasting Fields
Deleting Fields
Moving Fields
Resizing Fields
Aligning Fields
Importing Fields
Importing System Variables
Keyboard Equivalents

Selecting Fields

 To select a single field

Point to the field and click.
The field handles appear.

 To select more than one field

1. Point to a spot outside the range of fields to be selected.
2. Drag the mouse across the map, drawing a rubber band box that surrounds the fields.
3. Release the mouse button and the field handles appear.

or

1. Select the fields requested by pressing the SHIFT key and the left mouse button together.
2. To move the fields drag the selected area to where needed, by keeping the left mouse button pressed.
3. Release the mouse button to place the fields.

Deselecting Fields

 To deselect a field

Move the pointer away from the field and click.
The field handles disappear.

191Copyright © Software AG 2002

Modifying Map ContentsMap Editor

Copying Fields

Fields can be copied within the same map or between two different maps.

 To copy a field

1. Select the field(s) to be copied using the instructions provided in Selecting Fields.
2. From the Edit menu, choose Copy.

Or click the Copytoolbar button.
Or press CTRL+C .
The field is copied to the clipboard and can now be pasted within the same map or another map. For
instructions on pasting fields, see Pasting Fields.

Cutting Fields

The cut function can be used to delete fields from a map or to move fields within/between maps. When a field is
cut, it is taken from the map and placed on the clipboard. It remains there until the next cut or copy operation is
performed, at which time it is irretrievably discarded from the clipboard to make way for the next cut/copied
field.

 To cut a field

1. Select the field(s) to be cut using the instructions provided in Selecting Fields.
2. From the Edit menu, choose Cut.

Or click the Cut toolbar button.
Or press CTRL+X .
The field is cut to the clipboard and can now be pasted within the map or to another map. For instructions
on pasting fields, see Pasting Fields.

Pasting Fields

The paste function is used to place a field at a specific position within an editor after it has been copied or cut to
the clipboard from another position within the same map or another map. A field which has been copied or cut to
the clipboard can be pasted repeatedly without recopying it.

 To paste a field

1. Copy or cut a field as described in Copying Fields or Cutting Fields.
2. If the field is to be pasted in another map, select the map.
3. From the Edit menu, choose Paste.

Or click the Pastetoolbar button.
Or press CTRL+V .
The field is pasted to the map.

4. To paste the same field again, repeat Steps 2 and 3.

Copyright © Software AG 2002192

Map EditorCopying Fields

Deleting Fields

When a field is deleted, it is cut from the map but is not placed on the clipboard.

 To delete a field or a range of fields

1. Select the field(s) to be deleted using the instructions provided in Selecting Fields.
2. Select the field or range of fields.
3. From the Edit menu, choose Delete.

Or click the Delete toolbar button.
Or press DEL .
The field is deleted from the map.

Moving Fields

 To move a field or a range of fields to a different location on the map

1. Select the field(s) to be moved using the instructions provided in Selecting Fields.
2. Place the pointer within the field handles and drag the field or range of fields to the new location.
3. Release the mouse button.

Resizing Fields

 To resize a field

1. Select the field(s) to be resized using the instructions provided in Selecting Fields.
2. Point to any of the field handles surrounding the field.

The pointer changes to a double-sided arrow.
3. Drag the mouse until the field(s) reach the desired length.
4. Release the mouse button.

Aligning Fields

As an alternative to arranging fields within a map individually using the move function, you can arrange fields
more accurately with respect to each other or with respect to the map by using the align function. You can align
fields in a map in the following ways:

Justify selected fields to the left, right, top, or bottom of their field handles.
Center selected fields vertically or horizontally with respect to each other.
Center selected fields horizontally with respect to the map editor window.

 To align fields

1. Select the field(s) to be aligned using the instructions provided in Selecting Fields.
2. From the Field menu, choose Alignment and, from the cascading menu, one of the entries.

Or click on one of the alignment toolbar buttons.
The selected fields are aligned.

Importing Fields

You can import data fields, system variables, toggle buttons, selection boxes, and radio buttons into the active
map. Fields can be imported from any object, including DDMs, in any library. Imported fields are placed on the
system clipboard. You can paste them into as many map editor windows as desired.

193Copyright © Software AG 2002

Deleting FieldsMap Editor

 To import one or more fields from another object into the map editor window

1. From the Insert menu, choose Import .
2. From the cascading menu, choose the type of field you want to import, choose Data Field, Toggle Button,

Selection Box or Radio Button.
The "Import" dialog box appears. The name of the current library is displayed in the "Library" list box.

3. If the object containing the fields you want to import is located in a different library, open the "Library" list
box and select the library.

4. From the "Type" group frame, select the type of Natural object from which you want to import fields.
A list of all Natural objects in the current library of the type you selected appears in the "Object List" box.

5. Select the object that contains the fields you want to import.
The fields in the selected object appear in the "Data Fields" list box.

6. Select the fields that you want to import.
7. Choose Import .
8. Choose Quit .

The dialog box closes and the fields appear in the upper left corner of the map editor window. You can
move the fields around within the map.

Importing System Variables

 To import one or more system variables into the map editor window

1. From the Insert menu, choose Import .
2. From the cascading menu, choose System Variable.

The "Import System Variable" dialog box appears.
3. Select the system variables that you want to import.
4. Choose Import .
5. Choose Quit .

The dialog box closes and the system variables appear in the upper left corner of the map editor window.
You can move the system variables around within the map editor window.

Copyright © Software AG 2002194

Map EditorImporting System Variables

Keyboard Equivalents

Most of the actions described in this section can be performed using the keyboard instead of the mouse. The
table below provides key sequences for each action.

This action Is performed with this keyboard action

Move the mouse
pointer

Press arrow keys.

Select map field Place mouse pointer on field and press SPACEBAR.

Select map fields
Place mouse pointer outside field, press and hold down SPACEBAR, press arrow keys to
encircle map fields to be selected, release SPACEBAR.

Deselect map
field(s)

Move mouse pointer outside field(s) and press SPACEBAR.

Move map field(s) Select map field(s), press and hold down SPACEBAR and press arrow keys.

Copy map field Select map field and press CTRL+C

Cut map field Select map field and press CTRL+X

Paste map field Select map field and press CTRL+V

Delete map field Select map field and press Del

Resize map field
Select map field, move mouse pointer to a field handle, press and hold down SPACEBAR
and press arrow keys.

Local Data CTRL+ALT+L

Parameter Data CTRL+ALT+P

195Copyright © Software AG 2002

Keyboard EquivalentsMap Editor

Defining Fields
When a map field is inserted, it is given a default field definition and/or default field attributes which can be
modified at any time.

 To modify a definition for a field

1. Select a field.
2. From the Field menu, choose Definition .

The Field Definition dialog appears.

For detailed instructions, see the following sections:

Defining Text Fields
Defining Data Fields
Defining Selection Boxes
Defining a Radio Button
Defining a Toggle Button
Defining Menu Items
Defining Push Buttons
Defining Bitmaps

Defining Text Fields

is a constant whose format is always alphanumeric. You can modify the text in a text field at any time.

 To modify the text field

1. Double-click the text field.
Or, from the Field menu, select the text field and choose Definition .
The background in the text field is highlighted.

2. Enter the desired text directly in the text field. For text field modification, you can also use the context
menu.
If the text is long, it could be necessary to increase the size of the text field. See Resizing Fields.

3. Deselect the text field.

Copyright © Software AG 2002196

Map EditorDefining Fields

Defining Data Fields

 To modify a data field definition

1. Double-click the field.
Or, from the Field menu, select the field and choose Definition .
The "Field Definition" dialog box appears.

2. The "Field" text box contains the current name of the field. You can change it by typing in a new name.
3. In the "Format" list box, choose a format for the field. The default format is alphanumeric.

Note:
Because the information required to define a field depends on its format, text boxes in the "Field Definition"
dialog box may appear/disappear when the format changes.
For a list of valid formats, see Definition of Format and Length in the Natural Reference documentation.

4. In the "Length" list box, enter the desired length of the field.
This field is only displayed for data formats F, A, B, I, N and P.

5. In the "DF" list box, enter the desired date format.
This field is only displayed for data format D.

6. In the "AL" text box, enter the desired output length for the alphanumeric field. This can be longer or
shorter than the actual field.
This field is only displayed for data format A.

7. In the "NL" text box, enter the desired output length for the numeric field. This can be longer or shorter than
the actual field.
This field is only displayed for data formats B, I, N and P.

8. In the "FL" text box, enter the desired floating-point mantissa length during input or output. The total length
is FL+6 for sign, exponent, and decimal character.
This field is only displayed for data format F.

9. Select the "SG" toggle button to specify whether a sign position is to be allowed for the field.
This field is only displayed for data formats F, I, N and P.

10. Rules: The "Rules" field displays the number of processing rules that are defined for the data field.
11. Mode: The "Mode" field displays the current mode of the data field. The following table describes the

possible modes.

Data The field was created by selecting a field from a DEFINE DATA definition.

Sys The field is a system variable.

Undef The field was created directly on the screen and has a dummy name.

User The name of the field was created by changing the field name

View The field was created by selecting a field from a view.

12. Select the Array toggle button to define an array for the data field.
The Array button is enabled. For more information, see Defining an Array.

13. AD: The "AD" field displays the current attribute definition for the data field. For instructions on how to
modify the attribute definitions, see Defining Field Attributes.

197Copyright © Software AG 2002

Defining Data FieldsMap Editor

14. From the "PM" list box, choose a print mode for the field.
The following print modes are available:

blank No print mode (default)

C An alternative character set is used.

I Inverse print direction

N Normal print direction

15. In the "CD" list box, choose a color definition for the field content.
Note:
You can also define a color for a field by choosing Color in the Field menu.

16. In the "CV" text box, you can enter a dynamic field attribute control variable.
This is the control variable that will contain the attributes to be used for the data field. The variable must be
defined with format C (for attribute control) in the program that references the map.
The control variable also contains a MODIFIED data tag, which indicates if the field has been modified
following map execution. A single control variable can be applied to several map fields, in which case the
MODIFIED data tag will be set if any of the fields referencing the control variable have been modified.
See the Natural Reference documentation for more information on the CV parameter.

17. In the "Dim" list box, you can specify the number of dimensions for an array of control variable. The
default is none.
You must mark the array box in order to specify the control variable as an array.

18. In the "DY" text box, enter the dynamic string attributes.
The dynamic string parameter is used to assign attributes for dynamic attribute field display. See the Natural
Reference documentation for more information on the DY parameter.

19. Select the ZP toggle button to specify zero printing for the field. If this button is selected, zero values are
printed as one zero. If this button is not selected, zero values are suppressed.
This field is only displayed for data formats F, I, N and P.

20. In the "EM" text box, enter the edit mask to be used for the data field.
See the Natural Reference documentation for more information on the EM parameter.
Note:
The display length is overridden by the edit mask.

21. In the "Help Routine" text box, enter the name of the help routine that is to be invoked for the data field.
Specify a text constant or a user-defined variable that contains the name of the routine.

22. In the "Help Parameters" text box, enter the name of the parameter that is to be passed to the help routine.
Specify a constant or a user-defined variable that contains the value of the parameter.
If an "=" is specified, the name of the field as defined in the map definition is passed to the help routine.
When a help routine is assigned to a map, "=" denotes the name of the map.
Since no explicit DEFINE PARAMETER statement can be specified with the map editor, the format and
length of "Help Parameters=" are defined in the following way:
If the value specified for operand2 in the HE (Helproutine) session parameter is defined as a map field, the
format/length definition of this map field is used to define the format and length of "Help" Parameters. If not, the
parameter specified for "Help" Parameters must be defined as N7 (default format assumed) in the program using
the map.

23. If you want to use "Help" Parameters as an array, select the Array toggle button and choose the Array
button.

For additional information, see Defining an Array.

Defining Selection Boxes

To define a selection box, use the same procedure as described under Defining Data Fields.

Copyright © Software AG 2002198

Map EditorDefining Selection Boxes

To define attributes for a selection box, see Defining Field Attributes.

Defining Selection Box Items

 To define items for a selection box

1. Access the "Field Definition" dialog for the selection box.
2. Choose "Items".

The "Selection Box Definition" dialog appears. The field name is displayed in the "Selection Box" field.
The existing items are displayed in the "Items" list box. A default item "Item" is displayed.
From this dialog box, you can perform the actions described in the following sections.

Defining Constant Selection Box Items

 To add an item constant

1. Choose Add Constant.
The "Selection Box Item Constant" dialog box appears.

2. In the "Constant" text field, enter the name of the new item.
The length of the constant cannot be longer than the value you specified in the "Length" list box of the
"Field Definition" dialog.

3. Choose OK to define the selection box item.

Defining Variable Selection Box Items

 To add an item variable

1. Choose Add Variable.
The "Selection Box Item Variable" dialog box appears.

2. In the "Variable" text box, enter the name of the variable to serve as an item.
The variable must be a valid Natural identifier. The length of the variable value is fixed at the value set for
"Length" in the "Field Definition" dialog.

3. If the variable is an array, you can define the array by choosing Define Array.
4. Choose OK to define the selection box item.

199Copyright © Software AG 2002

Defining Constant Selection Box ItemsMap Editor

Box Items

 To import an item

1. Choose Import Item .
The "Import Selection Box Item" dialog box appears. The name of the current library is displayed in the
"Library" list box.

2. If the object containing the fields you want to import is located in a different library, open the "Library" list
box and select the library.

3. From the "Type" group frame, select the type of Natural object from which you want to import fields.
A list of all Natural objects in the current library of the type you selected appears in the "Object" List box.

4. Select the object that contains the fields you want to import.
The fields in the selected object appear in the "Data Fields" list box.

5. Select the fields that you want to import.
6. Choose Import .

The dialog box closes and the fields appear at the bottom of the "Items" box.

Modifying a Selection Box Item

 To modify an item

In the "Items" list box, select the item and choose Modify Item .
If the item is a constant, then the "Selection Box Item Constant" dialog box appears. See Defining Constant
Selection Box Items.
If the item is a variable, the "Selection Box Item Variable" dialog box appears. See Defining Variable
Selection Box Items.

Removing a Selection Box Item

 To delete an item

In the "Items" list box, select the item and choose Remove Item.
The item is removed from the "Items" list box.

Moving Selection Box Items

When you add an item to a selection box, it is placed at the bottom of the "Items" list box. In most cases, you
will want to reorder these items in logical groupings.

 To move an item to another position in the list box

1. Select the selection box item and drag the cursor to the new position
A dashed line between items indicates the position to which the item will be moved.

2. Drop the item in the new position.
The item is inserted at the new position.

Defining a Radio Button

To define a radio button, use the same procedure as described under Defining Data Fields.

To define attributes for a radio button, see Defining Field Attributes.

Copyright © Software AG 2002200

Map EditorDefining a Radio Button

Defining Radio Button Contents

 To define the contents for a radio button

1. Access the "Field Definition" dialog for the radio button.
2. Choose Contents.

The "Edit Constant or Variable" dialog box appears.
3. In the "Type" group frame, specify whether the radio button is to be a constant or a variable.
4. In the "Name" text box, enter the name of the constant or variable. If you want to import an

alphanumeric field from another Natural object, select Variable > Import .
For information on how to import variables from other Natural objects, see Importing Fields.
The length of a variable definition cannot exceed the length of the radio group definition.

5. If the contents are an array, then select the Array toggle button and choose "Define Array".
For information on how to define an array, see Defining an Array.

6. Choose OK to complete definition.

Defining a Toggle Button

To define a toggle button, use the same procedure as described under Defining Data Fields.

To define attributes for a toggle, see Defining Field Attributes.

Defining a Toggle Button Label

The format is always L (Logical).

 To define the label for a toggle button

1. Access the "Field Definition" dialog for the toggle button.
2. Choose Label.

The "Edit Constant or Variable" dialog box appears.
3. In the "Type" group frame, specify whether the toggle button is to be a constant or a variable.
4. In the "Name" text box, enter the name of the constant or variable. If you want to import an

alphanumeric field from another Natural object, select Variable > Import .
For information on how to import variables from other Natural objects, see Importing Fields.

5. In the "Format" list box, select the format for the variable.
6. In the "Length" text box, enter the length of the variable.
7. If the contents are an array, then select the Array toggle button and choose Define Array.

Note: The start values for the toggle button labels are set to 1 as default. To change the start value of one
label, select the element to be changed and set the new start value.
For information on how to define an array, see Defining an Array.

8. Choose OK to complete definition.

Defining Menu Items

 To define items for a menu

In the menu bar, double-click any menu item.
The "Edit Menu" dialog box appears. From this dialog box, you can perform the following actions:

201Copyright © Software AG 2002

Defining a Toggle ButtonMap Editor

Editing a Menu Name

 To edit a menu name

1. From the "Edit Menu" dialog box, choose Menu Name.
The "Edit Constant or Variable" dialog box appears.

2. In the "Type" group frame, specify whether the menu name is to be a constant or a variable.
3. In the "Name" text box, modify the name of the constant or variable. If you want to import a variable from

another Natural object, select Variable > Import .
For information on how to import variables from other Natural objects, see Importing Fields.

4. If the menu is an array, then select the Array toggle button and choose Define Array.
For information on how to define an array, see Defining an Array.

5. Choose OK to complete definition.

Adding a Menu Item

 To add items to a menu

1. From the "Edit Menu" dialog box, choose Add Item.
The "Define Menu Item" dialog box appears.

2. Choose Item Name.
The "Edit Constant or Variable" dialog box appears.

3. In the "Type" group frame, specify whether the menu item is to be a constant or a variable.
4. In the "Name" text box, modify the name of the constant or variable. If you want to import a variable from

another Natural object, select Variable > Import .
For information on how to import variables from other Natural objects, see Importing Fields.

5. If the item is an array, then select the Array toggle button and choose Define Array.
For information on how to define an array, see Defining an Array.

6. Choose OK .
The "Define Menu Item" dialog box appears.

7. From the "Key Name" list box, choose a PF key name for the item.
PF keys which have already been allocated do not appear in the list box.

8. Select the Enabled toggle button to permit menu item selection. Otherwise, the menu item cannot be
selected.

9. Choose OK .
The "Edit Menu" dialog is displayed with the new menu item.

Copyright © Software AG 2002202

Map EditorAdding a Menu Item

Adding a Submenu

 To define a submenu for a menu item

1. From the "Edit Menu" dialog box, choose Add Submenu.
The "Edit Submenu" dialog box appears.

2. From the "Edit Submenu" dialog box, choose Submenu Name.
The "Edit Constant or Variable" dialog box appears.

3. In the "Type" group frame, specify whether the submenu name is to be a constant or a variable.
4. In the "Name" text box, modify the name of the constant or variable. If you want to import a variable from

another Natural object, select Variable > Import .
For information on how to import fields from other Natural objects, see Importing Fields.

5. If the submenu is an array, then select the Array toggle button and choose Define.
For information on how to define an array, see Defining an Array.

6. Choose OK .
The "Edit Submenu" dialog box appears.

7. To add items to the submenu, choose Add Item and follow the instructions under Adding a Menu Item.
8. To add a separator to the submenu, choose Add Separator and follow the instructions under Adding a

Menu Separator.
9. To modify a submenu item, choose Modify Item and follow the instructions under Modifying a Menu Item.

10. To remove a submenu item, choose Remove Item and follow the instructions under Removing a Menu
Item.

11. Choose OK to complete the submenu definition/modification.

Adding a Menu Separator

You can designate logical groupings in your menus or submenus by separating these groupings with horizontal
lines.

 To add a separator to a menu or submenu

1. From the "Edit Menu" or "Edit Submenu" dialog box, choose Add Separator.
A selected separator is placed behind the last menu item.

2. Drag the separator to the new position.
A dashed line between items indicates the position to which the separator will be moved.

3. Drop the separator in the new position.
The separator is inserted at the new position.

Modifying a Menu Item

 To modify a menu item

1. In the "Menu Items" list box, select the item and choose Modify Item .
The "Define Menu Item" dialog box appears.

2. Follow the instructions as described in Adding a Menu Item.

203Copyright © Software AG 2002

Adding a Menu SeparatorMap Editor

Removing a Menu Item

 To delete a menu item

In the "Menu Items" list box, select the menu item and choose Remove Item.
The menu item is removed from the "Menu Items" list box.

Moving a Menu Item

When you add an item to a menu or submenu, it is placed at the bottom of the "Menu Items" list box. In most
cases, you will want to reorder these items in logical groupings.

 To move an item to another position in the list box

1. Select the menu item and drag the cursor to the new position
A dashed line between items indicates the position to which the item will be moved.

2. Drop the item in the new position.
The item is inserted at the new position.

Defining Push Buttons

 To define a push button

1. Double-click the push button.
The "Define Push Button" dialog box appears.

2. Choose Edit Label.
The "Edit Constant or Variable" dialog box appears.

3. In the "Type" group frame, specify whether the push button name is to be a constant or a variable.
4. In the "Name" text box, modify the name of the constant or variable. If you want to import a variable from

another Natural object, select Variable > Import .
For information on how to import variables from other Natural objects, see Importing Fields.

5. If the push button is an array, then select the Array toggle button and choose Define Array.
For information on how to define an array, see Defining an Array.

6. Choose OK .
The "Define Push Button" dialog box appears.

7. From the "Key Name" list box, choose a PF key name for the push button.
PF keys which have already been allocated do not appear in the list box.

8. Select the Enabled toggle button to permit push button selection. Otherwise, the push button cannot be
selected.

9. Choose OK .
The push button is displayed with the new name.

Copyright © Software AG 2002204

Map EditorRemoving a Menu Item

Defining Bitmaps

 To define a bitmap

1. Double-click the bitmap.
The "Define Bitmap" dialog box appears.

2. Choose Edit Label.
The "Edit Constant or Variable" dialog box appears.

3. In the "Type" group frame, specify whether the bitmap name is to be a constant or a variable.
4. In the "Name" text box, modify the name of the constant or variable. If you want to import a variable from

another Natural object, select Variable > Import .
For information on how to import variables from other Natural objects, see Importing Fields.

5. If the bitmap is an array, then select the Array toggle button and choose Define Array.
For information on how to define an array, see Defining an Array.

6. Choose OK .
The "Define Bitmap" dialog box appears.

7. Choose Edit File Name.
The "Edit Constant or Variable" dialog box appears.

8. Repeat Steps 3 to 6.
9. From the "Key Name" list box, choose a PF key name for the bitmap.

PF keys which have already been allocated do not appear in the list box.
10. Select the Enabled toggle button to permit bitmap selection. Otherwise, the bitmap cannot be selected.
11. Select the Scale Bitmap toggle button to cause the bitmap to be displayed with the size defined by the map.

Otherwise, the bitmap is displayed in its original size.
12. Choose OK .

The bitmap is displayed with the new name.

205Copyright © Software AG 2002

Defining BitmapsMap Editor

Defining Field Attributes
Field attributes can be defined for data fields, toggle buttons, radio buttons and selection boxes.

 To define the attributes of a field

1. In the "Field Definition" dialog box for the appropriate field, choose Attributes .
The "Attribute Definitions" dialog box appears.

2. To change the definition for an attribute, open the list box for the attribute and select a different value. A
description of the options for each attribute is provided later in this section.

3. To change the filler character, in the "Filler Character" text box, enter a different character.
Empty input fields or modifiable output fields are filled with this character. When you edit an input field
which is padded with blanks to its maximum length, it may appear as if the text cannot be edited. In such
cases, the blanks must be explicitly deleted from the end of the field.

4. Choose OK .

Copyright © Software AG 2002206

Map EditorDefining Field Attributes

Attribute Code Explanation

Field Representation Attributes

Blinking B Value is displayed blinking.

Cursive/Italic C Value is displayed cursive/italic.

Default D Value is displayed with normal intensity.

Intensified I Value is displayed intensified.

Non-display N A value entered in the field will not be displayed.

Underlined U Value is displayed underlined.

Reverse video V Value is displayed in reverse video.

Dynamic attributes Y Attributes are controlled via a control variable.

Field Alignment Attributes

Left-justified L Value is displayed left-justified.

Right-justified R Value is displayed right-justified.

Leading zeros right-justified. Z Numeric values are displayed with leading zeros,

Field Input/Output
Characteristics

Input field, non-protected A Field is an input field and non-protected.

Output field, modifiable M Field is an output field and can be modified.

Output field, protected O Field is an output field and write-protected.

Temporarily protected P Used in conjunction with control variable.

Mandatory Input
Characteristics

Value mandatory E
Value must be entered in the field. Only relevant for input-only
fields (AD=A).

Value optional F Value can, but need not, be entered in the field.

Length of Input Value
Characteristics

Fixed input length G
Value entered in field must have same length as field. Only relevant
for input-only fields.

Variable input length H Value entered in field can be shorter than field.

Field Upper/Lower Case
Characteristics

Translate lower to upper T The value entered is translated to upper case.

Accept lower case W Lower case values are to be accepted.

207Copyright © Software AG 2002

Defining Field AttributesMap Editor

Defining an Array
You can define an array of up to three dimensions for a data field. The order in which the dimensions of the
array are mapped to the map layout is determined by the values you enter.

The "Define Array" push button is inactive unless the "Array" toggle button is selected.

 To define an Array and its dimensions for the data field

1. Choose Array .
The "Define Map Array" dialog box appears.

2. From the "No. Dimensions" list box, select the number of dimensions for the array.
The default number of dimensions is 1. Text boxes appear for the number of dimensions specified.

3. In the "Line Spacing" text box, enter the number of blank lines to be inserted horizontally between each
dimension occurrence in the array.

4. In the "Column Spacing" text box, enter the number of blank columns to be inserted vertically between each
dimension occurrence in the array.

5. For a field defined as a three-dimensional array the "CLS/LS" text box is displayed. Enter the number of
blank lines to be inserted vertically or columns to be inserted horizontally between dimensions 1, 2, or 3,
depending on the layout definition for dimension 3.
The values specified in the Layout list boxes determin in which direction each of the dimensions are painted
in the edit area of the map. (V = vertical, H = horizontal, VD/HD = vertical/horizontal, position of third
dimension)

6. In the "Start From" text box, enter the starting index value for each dimension.
You can enter a number or the name of a variable; the actual value is supplied in the program that invokes
the map definition. Unless defined otherwise as a field in the map, the variable is assumed to be defined as
format/length N7.

7. In the "Upper Bounds" text box, enter a value for each dimension.
This number is the highest occurrence of the first, second and third dimension. A field defined in a program
(a user-defined variable or a database field) can be imported to define the map array. In this case, the upper
bounds of the field, as defined in the program, are used. All values can be overwritten for imported data
fields. However, when you choose OK in the "Field Definition" dialog, you are asked if you really want to
change an imported field’s definition.
If the array is initially defined in the map, the upper bounds are set by the number of occurrences defined
for the vertical, horizontal and fixed indexes.

8. In the "Occurrences" text box, enter a value for each dimension.
This is the number of occurrences that will be displayed on the map. This does not apply to the third
dimension of a 3-dimensional array because only two ranges of occurrences can be displayed on the screen.
One-dimensional arrays can be displayed as multi-line/multi-column fields. For these arrays, the second
number of occurrences and the layout for the second dimension can be defined.

9. From the "Layout" list box, select a layout value for each dimension.
Layout values determine the axis assumed by each dimension of the array. This determines how the array is
represented in the map layout. For arrays of one and two dimensions, the only possible values are H
(horizontal axis) and V (vertical axis). For arrays with three dimensions, you must decide how the third
dimension will be represented. The options are HD (horizontally detached) or VD (vertically detached). The
dimension specified as HD or VD is represented by members which are grouped in a horizontal or vertical
orientation.

10. Choose OK .
The array is defined and you are returned to the "Field Definition" dialog box.

Splitting arrays into multiple parts is currently not supported by the map editor (that is, there cannot be two
arrays with the same name and non-overlapping bounds, as is possible in Natural for mainframe platforms).
Interleaving arrays are supported.

Copyright © Software AG 2002208

Map EditorDefining an Array

When defining multi-dimensional arrays, note that the defaults for the first and second dimensions have been
reversed, which means that horizontal will be vertical and vice versa; in addition, the first and second dimensions
can now also be specified as "fixed"; the third dimension is still "fixed" by default.

Changing the Number of Displayed Occurrences in an Array

Once you have defined an array, you can use the mouse to graphically modify the number of displayed
occurrences and, indirectly, the upper bounds without accessing the "Define Map Array" dialog box.

 To modify the number of displayed occurrences and/or upper bounds for an array

1. Place the mouse pointer on one of the four corner field handles.
2. Drag the mouse to increase/decrease the number of elements in the array.

During resizing, a dotted outline indicates the intended modification.
3. When you have reached the desired size for the array, release the mouse button.

If you increase the number of displayed occurrences for a dimension beyond the upper bound, then the
upper bound is automatically increased as well. If you decrease the number of displayed occurrences for a
dimension, the upper bound remains at its previous value.

209Copyright © Software AG 2002

Defining an ArrayMap Editor

Modifying Field Colors and Representation
For any text constant, data field, toggle button, radio button or selection box you can specify a color and a
display style for its name.

 To define the color and/or representation for a field

1. In the map editor, select the field.
2. From the Field menu, choose Color.

Or click the Color/Representation toolbar button.
The "Field Color and Representation" dialog box appears.

3. From the "Color Selection" group, select a color.
4. From the "Field Representation" group, select an option.
5. Choose OK .

Using Field Rules
Creating Field Rules
Copying Field Rules
Editing Field Rules
Changing Field Rule Rank
Unlinking (Deleting) Field Rules
Defining Free Predict Rules
Converting Free Rules to Inline Rules
Defining Key Rules

Field rules can be defined for any data field, toggle button, radio button or selection box. A field can have up to
100 processing rules (ranked 0-99). At map execution time, the processing rules are executed in ascending order,
first by rank, then by screen position of the field.

For optimum performance, the following assignments are recommended when assigning ranks to processing
rules:

Rank Processing Rule

0 Termination rule

1-4 Automatic rules

5-24 Format checking

25-44 Value checking for individual fields

45-64 Value cross-checking between fields

65-84 Database access

85-99 Special purpose

Processing rules can be defined as either inline processing rules or free Predict rules.

Inline processing rules are rules that are defined within a map source and do not have a name assigned. An
ampersand (&) within the source code of a processing rule will be dynamically substituted with the fully
qualified name of the field using the rule. For example:

Copyright © Software AG 2002210

Map EditorModifying Field Colors and Representation

IF & = ’ ’ REINPUT ’ENTER NAME’ MARK *&

Note:
To be able to access Predict on a UNIX or mainframe server, you must have set up your NATPARM parameter
file accordingly and established a corresponding link by using Natural RPC. For information on how to assign
dictionary servers and how to use Natural RPC, refer to the Natural Remote Procedure Call (RPC)
documentation.

Creating Field Rules

 To create a field rule

1. Select a map field.
2. From the Field menu, choose Rules.

The "Field Rule" dialog box appears.
3. From the "Field Rule" dialog box, choose Create.

A program editor window appears.
4. Enter the rule.
5. From the Object menu, choose Save to save the rule.

The "Rule Selection" dialog box appears.
6. In the list box, select a rank number.

The selected rank appears in the "Rank " box.
7. Choose OK .

At this point, you can create another new rule or make a copy of the new rule and save it with a different
rule number.

Copying Field Rules

 To copy a field rule

1. Select the map field containing the field rule to be copied.
2. From the Field menu, choose Rules.

The "Field Rules" dialog box appears.
3. In the "Ranks" list box, select the number of the rule to be copied.
4. Choose Copy.

The "Rule Selection" dialog box appears.
5. In the "Rank" list box, select a rank for the new rule.
6. Choose OK .

If you chose the rank number of an existing rule, then you are asked whether you want to overwrite the rule.
Otherwise, the rule is copied and the "Field Rules" dialog box is redisplayed. The rule is displayed in the
"Rule Text Fragment" box.

211Copyright © Software AG 2002

Creating Field RulesMap Editor

Editing Field Rules

 To edit a field rule

1. Select the map field containing the field rule to be edited.
2. From the Field menu, choose Rules.

The "Field Rules" dialog box appears.
3. In the "Ranks" list box, select the rank number of the rule to be edited.
4. Choose Edit .

The program editor appears.
5. Edit the rule and then, from the Object menu, choose Save to save the rule.
6. Close the program editor.

Changing Field Rule Rank

 To change the rank of a field rule

1. Select the map field containing the field rule to be modified.
2. From the Field menu, choose Rules.

The "Field Rule" dialog box appears.
3. In the "Ranks" list box, select the rank number of the rule to be reranked.
4. Choose Move.

The "Rule Selection" dialog box appears.
5. In the "Rank" list box, select another rank for the rule.
6. Choose OK .

Unlinking or Deleting Field Rules

Unlinking is the same as deleting a field rule.

 To delete a field rule

1. Select the map field containing the field rule to be deleted.
2. From the Field menu, choose Rules.

The "Field Rule" dialog box appears.
3. In the "Ranks" list box, select the rank number of the rule to be deleted.
4. Choose Unlink .

You are asked if you really want to unlink (delete) the field rule.
5. Choose Yes to delete the field rule.

Copyright © Software AG 2002212

Map EditorEditing Field Rules

Defining Free Predict Rules

 To define a free rule; that is, to link a free rule to a selected field

1. Select a map field.
2. From the Field menu, choose Rules.

The "Field Rule" dialog box appears.
3. Choose Free Rule.

Since free rules cannot be created but only selected, the Create push button changes to "Select".
4. Choose Select.

The "Free Rule Selection" dialog box appears.
5. Enter the rule name, the Predict owner and up to five keywords under which the rule is stored in Predict.

Asterisk notation can be used for the rule name, the keywords can be combined with the boolean operators
AND and OR, and a "BUT NOT" keyword can be specified, too.
A free rule selection list is displayed, from which you can select the rule(s) you want to link to the field.
Choose Read Source to read the source code into the "Free Rule Text Fragment information" box of a
selected rule.

6. Choose OK .
With each selected rule, you are asked to assign a rank.

7. Specify a rule rank.
The rule is now linked to the field. At this point, you can convert a linked free rule into an inline rule as
described in Converting Free Rules to Inline Rules.

Converting Free Rules to Inline Rules

 To convert a linked free Predict rule to an inline rule

1. From the Field menu, choose Rules.
The "Field Rule" dialog box appears.

2. Select the rank of the free rule you want to convert.
The "Free Rule" toggle button is selected and the Free Rule appears in the "Rule Text Fragment
information" box.

3. Deselect the Free Rule toggle button.
A message box appears asking you whether you want to change the rule type to inline.

4. Choose OK .
The free rule becomes an inline rule and its source code is displayed in the "Rule Text Fragment
information" box.

213Copyright © Software AG 2002

Defining Free Predict RulesMap Editor

Defining Key Rules

The PF Key Rules function allows you to create, edit, move, copy and unlink (delete) function key related
processing rules for the active map. Key rules also can be defined as either inline processing rules or free Predict
rules.

Key rules can be used to assign activities to program sensitive function keys during map processing. For function
keys that already have a command assigned by the program, this command is executed without any rule
processing.

Example:

 IF *PF-KEY = ’PF3’ ESCAPE ROUTINE END-IF

When this rule is executed, map processing is terminated without further rule processing.

 To create, copy, and edit function key rules

From the Map menu, choose Pfkey rules.
The "PF-Key Rules" dialog box appears.
Key rules are defined exactly like field rules. For detailed instructions, see Using Field Rules.

Copyright © Software AG 2002214

Map EditorDefining Key Rules

Defining Data Areas for Maps
You can define a local data area for a map to define variables to be used for map processing rules. You can
define a parameter data area for a map to define the parameters that can be received from programs.

The procedures for defining, modifying, and deleting local and parameter data elements are virtually identical
and are therefore explained generically below.

Defining a Data Element
Modifying a Data Element
Removing a Data Element

Defining a Data Element

 To define a data element for a map

1. From the Map menu, choose Local Data or Parameter Data.
The "Define Local/Parameter Data" dialog box appears.

2. Choose Add to add a data definition.
The "Data Definition" dialog box appears.

3. In the "Name" text box, enter the name of the data element to be defined.
4. From the "Format" drop-down list box, select a data format.
5. If you selected the format A, B, F, I, or N, in the "Length" box, enter the field length.
6. If the data element is an array, in the "Dimensions" text box, select the number of dimensions (1-3).

The "Lower Bounds" and "Upper Bounds" text boxes appear for each dimension.
7. Enter the lower bound and upper bound for each dimension in the array.
8. Choose OK .

The "Define Local/Parameter Data" dialog box appears. The data element is displayed in the information
box.

Modifying a Data Element

 To modify a data element for a map

1. From the Map menu, choose Local Data or Parameter Data.
The "Define Local/Parameter Data" dialog box appears.

2. In the information box, select the data element to be modified.
3. Choose Modify to modify the data definition.

The "Data Definition" dialog box appears.
4. Modify the data definition as required.
5. Choose OK .

The "Define Local/Parameter Data" dialog box appears. The modified data element is displayed in the
information box.

215Copyright © Software AG 2002

Defining Data Areas for MapsMap Editor

Removing a Data Element

 To delete a data element for a map

1. From the Map menu, choose Local Data or Parameter Data.
The "Define Local/Parameter Data" dialog box appears.

2. In the information box, select the data element to be deleted.
3. Choose Remove to delete the data definition.

The data definition is removed from the information box.
4. Choose OK .

Testing Maps
Once you have created and successfully saved a map, you can test it so see how it will appear in an application.

 To test a map

1. Open the map to be tested.
The map editor is opened.

2. From the Object menu, choose Test.
The Natural output window is opened and the map appears as it would in the application.

3. Double-click the output window or press ENTER or ESCAPE to return to the map editor.

Previewing Maps
Maps which are larger than the area shown in the map editor window can be scrolled using the scroll bars on the
right, and at the bottom of the map editor window. Extremely large maps can be displayed in the map editor
window by using the "Preview mode" function.

When preview mode is active, the display size of the map fields is reduced so that the entire map fits into the
map editor window. All map editor functions work normally when preview mode is in effect.

 To display a map in preview mode

From the Window menu, choose Preview Mode.
The map is displayed in preview mode.

Flipping Maps
Note:
This menu item is only applicable to right-to-left usage in the Natural International Version.

It can be used to flip/toggle the map editor’s editing/display mode.

Copyright © Software AG 2002216

Map EditorTesting Maps

Modifying the Map Profile
With the map profile, you set the profile parameters for the active map. These parameters are saved with the
map.

 To set profile parameters

1. From the Map menu, choose Map Profile.
The "Map Editor Profile" dialog box appears.

2. Set profile parameters. Each parameter is described in the table below.
3. Choose OK to save the profile for the active map.

Map editor profile option settings are described in the following table.

Note:
The settings for "Zero printing" and "Upper case" are copied into the field definition when a new field is created.
These settings can be modified for each new field.

Option Setting Explanation

Format:

Page Size

The number of map lines to be edited (1 - 250). If "Std. Keys" is selected, the
number of lines is restricted to the range 3 - 250. For a map that is output with a
WRITE statement, specify the number of lines of the logical page output, not the
map size. The map can then be output several times on one page.

Line Size The number of map columns (5 - 249).

Column Shift
Column shift (0 or 1) to be applied to the map. This feature can be used to address
all 80 columns on a 80-column screen (Column Shift = 1, Line Size = 80).

Layout

The name of the map that serves as standard layout for the current map. You can
use this option to simplify the creation of many similar maps by creating one map
as the basic layout map with a set of fields to be used by the other fields. In all
similar maps, you specify the name of the standard layout map and you only add the
fields that are specific to the new map. See also the "Dynamic Layout" option
below.

Decimal Char "."
The character to be used as the decimal notation character. The decimal notation
character can only be changed with the GLOBALS command on the Library menu,
or by entering the "GLOBALS=" command in the command line.

Print Mode
The default print mode for variables. This value is copied into the field definition
when a new field is created.

 C An alternative character set is to be used

 I Inverse print direction

 N Standard print direction

 Blank No print mode

Standard Keys On
The last two lines of the map remain empty so that function key specifications can
be entered at execution time.

 Off All lines are used for the map.

Upper Case On Input is converted to upper case during map execution.

 Off Input is not converted to upper case during map execution.

217Copyright © Software AG 2002

Modifying the Map ProfileMap Editor

Option Setting Explanation

Field Sensitive On
The consistency check for a map field is made as soon as the field is filled by the
user.

 Off Field checking is performed when the map is filled completely.

Dynamic
Layout

On

If you have specified the name of a standard layout map in the "Layout" field, you
use this option to determine that fields are imported dynamically into the layout at
compile time. This means that you can alter your standard layout and this change
will automatically be reflected in all similar maps using this layout.

 Off Do not use the standard layout dynamically.

Zero Printing On Print numeric fields that contain all zeroes (print one zero, right justified).

 Off Suppress printing of numeric fields that contain all zeroes.

Right Justify On
Numeric and alphanumeric fields taken from a user view or a data definition are
right justified.

 Off
Numeric and alphanumeric fields taken from a user view or a data definition are not
right justified.

Manual Skip On
The cursor is not moved automatically to the next field in the map at execution
time, even if the current field is completely filled.

 Off The cursor is moved automatically to the next field in the map at execution time.

Context:

Device Check A device name can be viewed in this field.

WRITE
statement

On

The result of the map definition process is a WRITE statement and the resulting
(output) map can be invoked from a program using a WRITE USING FORM
statement. Empty lines at the end of the map are automatically deleted so that the
map can be output several times on one page.

 Off
The result of the map definition process is an INPUT statement and the resulting
map can be invoked from a program using an INPUT statement.

Help Routine
The name of the helproutine that is called at execution time when the help function
is invoked for this map (global help for the map).

Help Param

Enter the name of the "help" parameter that will be called at execution time when
the help function is invoked. The "help" parameter can only be defined when the
helproutine is specified.
Note:
If the combined length of the "Help Routine" and the "Help Param" exceeds 19
characters, it is truncated by the map editor.

as field default On
The helproutine specified for the map applies as the default to each individual field
on the map, that is, the name of each field is passed individually to the helproutine.
This option can only be chosen if the helproutine is specified.

 Off The name of the map is passed to the helproutine.

Help Text On The map is marked as help text.

 Off The map is not marked as help text.

Position

Line The position (line, vertical) where the help map is being output.

Column The position (column, horizontal) where the help map is being output.

Copyright © Software AG 2002218

Map EditorModifying the Map Profile

Option Setting Explanation

AutoRuleRank
Define the default rank for any newly created processing rule in the map. (Later on,
you can alter ranks individually).

Filler
Characters:

Optional,
Partial

 Indicates that a field is optional and can be partially filled.

Optional,
Complete

 Indicates that a field is optional but must be filled completely if it is used.

Required,
Partial

 Indicates that a field is required but can be partially filled.

Required,
Complete

Indicates that a field is required and must be filled completely.
Note:
If you enter a field using the mouse, the cursor will be placed to the right of the
filler character. The filler character is blank by default, and the field appears to be
unmodifiable. Press BACKSPACE to delete the blank, and enter a new filler
character.

219Copyright © Software AG 2002

Modifying the Map ProfileMap Editor

Setting Editor Options
You can set preferences for various editor options. These settings are taken as default values each time you start
the Map Editor.

 To change options for the Map Editor

From the Tools menu, select Options, and then in the option dialog select the tab "Map Editor".

Status Bar

Use this option to display the status bar at the top of the editor window. For information on the status line
contents, see Status Bar Information.

Ignore Field Mode "Undef."

Use this option to have those fields ignored by a CHECK or STOW command, that have been created on the
map but have not yet been named or defined; that is, they have only the values generated by the map editor.

Font

Use this option to select font types for maps. If you select a particular font for a map, this font is only output
when you have defined the same font for the Natural output window. Otherwise the map is output with the
default font.

Fixed fonts only

Use this option to specify that only fixed-width fonts are to be selectable in the "Font" dialog box (see above).
When not selected, you can choose proportional-width fonts in addition to the fixed-width fonts.

Status Bar Information

The status bar appears at the top of the window where the map is edited. It displays the following information:

Name - The name of the active field.
Row - The top-most row in which the active field begins.
Col - The left-most column in which the active field begins.
Len - The length of the active field in characters.
Format - The format of the active field.

Copyright © Software AG 2002220

Map EditorSetting Editor Options

Data Area Editor
The following topics are covered below:

General Information
The Column Header
Generating Copycode from a Data Area
Modifying Data Definitions
Searching for Data Fields
Setting Editor Options
Navigating

See also:

Data Area Editor Accelerators

General Information
A data area is a module containing the descriptions of data (data definitions) to be used by a Natural program,
subprogram, subroutine, helproutine, dialog or class. It usually contains a declaration of user-defined variables
and constants as well as referenced database fields in the form of data definition modules (DDMs).

Three different types of data areas can be used:

Local data areas (LDAs) are used to define the data to be used within a single Natural program.
Global data areas (GDAs) are used to define the data to be used by one or more Natural programs.
Parameter data areas (PDAs) are used to specify the data parameters to be passed between a Natural
program and a subprogram, external subroutine, helproutine, dialog or method.

All data areas are created and edited with the data area editor.

The data area editor window is used to enter and edit the field definitions that comprise a data area. The title bar
at the top of the window includes the name of the data area (or "Untitled" if the data area has not been named),
and the data area type; that is, local, global, or parameter. For example:

LDA01 [Local Data Area]

You can define fields and insert them into the new data area, and you can import fields from any cataloged DDM
in any Natural library or from the Predict server into the new data area.

221Copyright © Software AG 2002

Data Area EditorData Area Editor

Column Header
The column header line contains the column headers for the data area fields. Notice that the column header for
the field name changes, depending on the type of field that is selected.

Column Header Description

I

Information field:
R - Field is a "by value result" parameter.
(Only allowed in parameter data areas.)
V - Field is a "by value" parameter.
(Only allowed in parameter data areas.)
X - More information is available for the field. An edit
mask, header, or init value is defined for the field.

T

Type of field:
B - Block
C - Constant or Counter variable in views
G - Group Field
H - Handle of dialog element or object
M - Multiple value field
O - Handle of object
P - Periodic group
S - Structure
U - Global unique ID (GUID)
V - View
blank - Elementary field
* - Comment

L Level of the field (1 - 9).

Name of data
field

Name of the view, group, periodic group, multiple-value field, constant, count variable,
handle, block or elementary field.

F Format of the field.

Len Length of the field.

Index/Comment Array indices and field comment.

Name of DDM DDM name.

Parent/Comment Parent of a block and field comment.

Copyright © Software AG 2002222

Data Area EditorColumn Header

Generating Copycode from a Data Area
This function creates a copycode object containing a DEFINE DATA statement which corresponds to the current
data area. You can then edit the generated copycode with the program editor.

 To generate a copycode

1. Open the data area from which a copycode is to be generated.
2. From the Object menu, choose Generate.

The copycode is generated and given the name "Untitled".

Modifying Data Definitions
Modifying Fields
Inserting Fields

Modifying Fields

Selecting Fields

 To select a field in the data area editor

Click on the field.

 To select a range of fields

1. Point to the first field to be selected.
2. Drag the cursor to the last field you want to select.
3. Release the mouse button.

 To select all fields in the data area editor

From the Edit menu, choose Select all.

223Copyright © Software AG 2002

Generating Copycode from a Data AreaData Area Editor

Copying Fields

Fields can be copied and pasted within the same data area or another data area.

 To copy fields in the data area editor

1. Select the field(s) to be copied (see Selecting Fields).
2. From the Edit menu, choose Copy.

Or click the Copy toolbar button.
Or press CTRL+C .
The field is copied to the clipboard and can now be pasted within the same data area or another data area.
For instructions on pasting text, see Pasting Fields.

 To copy data area field(s) to a Natural object handled by the program editor

1. From the Objects menu, choose List .
2. Select the lines(s) to be copied.
3. From the Edit menu, choose Copy.

Or click the Copy toolbar button.
Or press CTRL+C .
The field is copied to the clipboard and can now be pasted to a program editor object.

Cutting Fields

The cut function can be used to delete fields from a data area or to move fields within a data area. When a field is
cut, it is taken from the object and placed on the clipboard. It remains there until the next cut or copy operation is
performed, at which time it is irretrievably discarded from the clipboard to make way for the next cut/copied
field.

 To cut fields from the data area editor

1. Select the field(s) to be cut (see Selecting Fields).
2. From the Edit menu, choose Cut.

Or click the Cut toolbar button.
Or press CTRL+X .
The field is cut to the clipboard and can now be pasted within the object or to another object. For
instructions on pasting text, see Pasting Fields.

Pasting Fields

 To paste or cut fields as described above

1. Select the field after which or before which the field is to be pasted.
Whether the field is pasted before or after the selected field is determined by the Insert option specified in
the Options, Data Area Editor menu. For more information on the insert options, see Setting Editor
Options.

2. From the Edit menu, choose Paste.
Or click the Paste toolbar button.
Or press CTRL+V .
The selected fields are pasted after/before the selected field.

Copyright © Software AG 2002224

Data Area EditorCopying Fields

Deleting Fields

 To delete fields in the data area editor

1. Select the field(s) to be deleted (see Selecting Fields).
2. From the Edit menu, choose Delete.

Or click the Delete toolbar button.
Or press DEL .
If delete messages are active, you are requested to confirm deletion. Otherwise, the fields are deleted
without confirmation.

Inserting Fields

There are several ways to insert fields into the data area editor.

 To insert fields

1. Select a field.
Inserted fields are placed before or after the selected field, depending on whether Insert before or Insert
after is selected in the Options, Data Area Editor menu (see Setting Editor Options).

2. From the Insert menu, choose a field type.
Or press INS and, in the "Insert Field" dialog box that appears, select a field type, and then choose OK .
Or click the Insert a Field toolbar button, in the "Insert Field" dialog box that appears, select a field type,
and then choose Add.

3. You can insert the field repeatedly by choosing Add.
4. Use Cancel/Quit to quit the dialog box.

The remainder of this section describes the definition of each type of field.

225Copyright © Software AG 2002

Deleting FieldsData Area Editor

Inserting a Data Field

 To insert a data field into the active data area

1. From the Insert menu, choose Data Field.
Or press INS and, in the "Insert Field" dialog box that appears, select Define a Data Field, and then choose
OK .
Or click the Insert a Field toolbar button, in the "Insert an Entry" dialog box that appears, select Data
Field, and then choose OK .
The "Data Field Definition" dialog box appears.

2. In the "Level" text box, enter a level number (1-9). The level number cannot be more than one level higher
than the previous level.

3. In the "Field" text box, enter a name for the field. The field name must be a valid Natural identifier. (See
section Object Naming Conventions).

4. In the "Format" drop-down list box, select the desired format for the data field. For a list of valid formats,
see Definition of Format and Length in the Natural Reference documentation.

5. If the "Dynamic" check box is activated, the field length is set dynamically. This is only available for
alphanumeric and binary fields. In this case the length text box will be deactivated.

6. In the "Length" text box, enter the field length. The formats C, L, D and T do not require a length definition.
If you enter an invalid length, a message displays valid lengths for the specified format.

7. To define an array, choose "Array" and see Defining an Array.
8. To specify an edit mask, in the "Edit Mask" text box, enter its name. Edit masks are optional.

If an edit mask is used, it must conform with Natural syntax rules and be valid for the field length and
format. See Edit Masks in the Natural Reference documentation.

9. To specify a header for the data field, in the "Header" text box, enter the name of the header.
10. To document the data field, in the "Comment" text box, you can enter a comment. The comment can be up

to 29 characters long, minus the length of the array definition, if any.
11. To initialize a value for the data field, choose Initialize and see Initializing the Value for a Data Field. This

definition does not apply to parameter data areas.
12. Choose Add.

Defining an Array

The "Array Definition" dialog box displays the specified field name and type.

 To define an array

1. In the "Dimensions" drop-down list box, select the number of dimensions for the array (1, 2, or 3).
To delete an array definition, select 0.

2. In the "Lower Bound" text box, enter the lower bound for each dimension.
You can enter a numeric constant with a positive or negative offset (as lower bound), which must be
defined before the edited field. You can also enter a variable name if the edited field is a multiple field or a
periodic group.
A constant or variable name is only allowed if no constant or variable is specified in the "Occurrences" text
box.

3. In the "Occurrences" text box, enter the number of occurrences for each dimension. You can enter a
numeric constant with a positive or negative offset.
A constant or variable name is only allowed if no constant or variable is specified in the "Lower Bound"
text box.

4. Choose OK .
The "Array Definition" dialog box closes.

Copyright © Software AG 2002226

Data Area EditorInserting a Data Field

Initializing the Value for a Data Field

In the "Initialize" dialog box, you can enter the value(s) for a data field in two different ways: single-value and
free-form mode.

In single-value mode, you enter the values in a structured way. In free-form mode, you enter the values just as
you would in a DEFINE DATA statement.

 To initialize the value for a data field in single-value mode

1. Select the Single Value option button.
2. If the data field is an array, then an "Index" drop-down box is displayed for each dimension. If not, then go

to Step 4.
3. Select the index element to which you want to assign a value by selecting a value from each index box.

For example, to select array element (3,2) located in the third row and second column of a two dimensional
array, select 3 in the first index box and 2 in the second index box.

4. In the "Value" text box, enter the value.
Make sure that the value corresponds to the field type. Note that parentheses, apostrophes or value prefixes
(for example, H for Hex, D for Date, or T for Time) are not required.

5. If the data field is an array, choose Accept to apply the value and increment the index by one. Repeat Steps
3 and 4 until you have initialized all of the array fields you want. Then choose OK .
If the data field is not an array, choose OK .
The "Initialize" dialog box closes.

Initializing Values in Free-form Mode

 To initialize the value for a data field in free-form mode

1. Select Free Form Entry.
An edit box is displayed.

2. Enter the values in INIT syntax just as you would in a DEFINE DATA statement .

227Copyright © Software AG 2002

Initializing the Value for a Data FieldData Area Editor

Inserting a Global Unique ID

This function is only possible with LDAs and GDAs.

 To insert a global unique ID

1. From the Insert menu, choose Global Unique ID.
Or press INS and, in the "Insert Field" dialog box that appears, select Global Unique ID, and then choose
OK .
Or click the Inserts a Field toolbar button, in the "Entry Definition" dialog box that appears, select Global
Unique ID, and then choose OK .
The "Global Unique ID Definition" dialog box appears.

2. In the "Level" text box, enter a level number (1-9). The level number can only be one level higher than the
previous level.

3. In the "Name" text box, enter a name for the global unique ID. The name must be a valid Natural identifier.
(See section Object Naming Conventions.)

4. In the "Comment" text box, you can enter a comment.
5. Choose ADD.

The global unique ID is generated as a Natural constant with length A36.

Inserting a Constant

Note:
You cannot insert constants into parameter data areas.

 To insert a constant into the active data area

1. From the Insert menu, choose Constant.
Or press INS and, in the "Insert Field" dialog box that appears, select Define a Constant, and then choose
OK .
Or click the Insert a Field toolbar button, in the "Insert Field" dialog box that appears, select Constant, and
then choose OK .
The "Constant Definition" dialog box appears.

2. In the "Name" text box, enter a name for the constant. The constant name must be a valid Natural identifier.
(See section Object Naming Conventions).

3. In the "Format" drop-down list box, select the desired format for the constant. For a list of valid formats, see
Definition of Format and Length in the Natural Reference documentation.

4. In the "Length" text box, enter the field length. The formats C, L, D and T do not require a length definition.
If you enter an invalid length, a message displays valid lengths for the specified format.

5. To define an array, choose Array and see Defining an Array.
6. To specify an edit mask, in the "Edit Mask" text box, enter its name. Edit masks are optional. If an edit

mask is used, it must conform with Natural syntax rules and be valid for the field length and format. Edit
Masks are described in the Natural Reference documentation.

7. To specify a header for the constant, in the "Header" text box, enter the name of the header.
8. To document the constant, in the "Comment" text box, you can enter a comment. The comment can be up to

32 characters long, minus the length of the array definition, if any.
9. Choose Initialize and see Initializing the Value for a Data Field.

10. Choose Add.

Copyright © Software AG 2002228

Data Area EditorInserting a Global Unique ID

Inserting a Data Block

A data block is a collection of variables and/or DDMs. Blocks can be defined only for global data areas.

 To insert a data block into the active global data area

1. From the Insert menu, choose Block.
Or press INS and, in the "Insert Field" dialog box that appears, select Block, and then choose OK .
Or click the Insert a Field toolbar button, in the "Insert Field" dialog box that appears, select Define a
Block, and then choose OK .
The "Define a Block" dialog box appears.

2. In the "Name" text box, enter a name for the data block.
3. In the "Parent" text box, enter the name of the parent block.

Note:
If you use a parent block, it must be defined in the current data area. Otherwise, a syntax error occurs.

4. In the "Comment" text box, enter a comment concerning the block. The comment can be up to 32 characters
long, minus the length of the parent block name.

5. Choose OK to save the completed block definition.
The "Define a Data Field" dialog box appears.

6. Define the data fields belonging to the block.
For more information on defining data fields, see Inserting a Data Field.

Inserting a Data Structure

A data structure, also known as a group, consists of data fields and other structures. The maximum number of
levels in a data structure is 9.

 To insert a data structure into the active data area

1. From the Insert menu, choose Structure.
Or press INS and, in the "Entry Definition" dialog box that appears, select Define a Structure, and then
choose OK .
Or click the Insert a Field toolbar button, in the "Insert Field" dialog box that appears, select Structure,
and then choose OK .
The "Structure Definition" dialog box appears.

2. In the "Level" text box, enter a level number (1-9). The level number cannot be more than one level higher
than the previous level.

3. In the "Name" text box, enter a name for the structure. The structure name must be a valid Natural
identifier. (See section Object Naming Conventions).

4. To define an array, choose Define Array and see Defining an Array.
5. To document the structure, in the "Comment" text box, you can enter a comment. The comment can be up

to 32 characters long, minus the length of the array definition, if any.
6. Choose OK to save the completed data structure definition.

The "Data Field Definition" dialog box appears.
7. Define the data fields belonging to the structure.

The level number for a data field cannot be more than one level higher than the previous level.
For more information on defining data fields, see Inserting a Data Field.

229Copyright © Software AG 2002

Inserting a Data BlockData Area Editor

Inserting a Handle

For a handle, you can define the type "Dialog Element" or "Object".

 To insert a handle into the active data area

1. From the Insert menu, choose Handle.
Or press INS and, in the "Insert Field" dialog box that appears, select Define a Handle, and then choose
OK .
Or click the Insert a Field toolbar button, in the "Entry Definition" dialog box that appears, select Define a
Handle, and then choose OK .
The "Handle Definition" dialog box appears.

2. In the "Level" text box, enter a level number (1-9). The level number cannot be more than one level higher
than the previous level.

3. In the "Name" text box, enter a name for the handle. The handle name must be a valid Natural identifier.
(See section Object Naming Conventions).

4. To define an array, choose Define Array and see Defining an Array.
5. To define a handle of the type dialog element, in the "Type" field, select the Dialog Element toggle button

and open a list box. There, choose a dialog element.
6. To define an object handle, in the "Type" field, select the Object toggle button.
7. To document the handle, in the "Comment" text box, you can enter a comment. The comment can be up to

32 characters long, minus the length of the array definition, if any.
8. Choose ADD to save the completed handle definition.

The handle is inserted into the data area and an empty "Define Handle" dialog box appears.
9. Define another handle or choose Cancel to exit.

For further information on object handles, see the NaturalX documentation.

Inserting a Comment

Comments are used to document Natural source code and are ignored during processing.

You can insert a comment into the active data area, before or after a selected field. The "Define Comment"
dialog box allows you to define the comment that you want to insert.

 To insert a comment into the active data area

1. From the Insert menu, choose Comment.
Or press INS and, in the "Insert Field" dialog box that appears, select "Comment", and then choose OK .
Or click the Insert a Field toolbar button, in the "Insert Field" dialog box that appears, select Comment,
and then choose OK .
The "Comment Line Definition" dialog box appears.

2. In the "Comment" text box, enter text up to 69 characters long.
3. Choose Add to insert the completed comment.

The comment is inserted into the data area and an empty "Comment Line Definition" dialog box appears.
4. Define another comment or choose Cancel/Quit to exit.

Copyright © Software AG 2002230

Data Area EditorInserting a Handle

Modifying a Field Definition

1. Double-click the field name.
Or select the field name and, from the "Field" menu, choose "Modify".
A dialog box appears. The type of dialog box depends on the type of field.

2. Modify the field attributes as necessary and then choose OK to save your changes.
For further information on defining data fields, see Inserting a Data Field.

Defining a Counter Variable

A counter variable is used to specify how many occurrences exist for a multiple field or periodic field.

 To create a counter variable

1. Select the a multiple field or periodic field.
2. From the "Field" menu, choose "Counter".

A counter field appears in the data area. It is labeled "C".

Redefining a Field Definition

Redefining a field enables you to convert the format of a field or divide a single field into segments.

 To redefine a field definition from one type to another

1. Select the field name and, from the Field menu, choose Redefine.
The "Insert Redefine" dialog box appears.

2. To define a structure, select Structure.
To define a data field, select Data Field.
To define a comment, select Comment.

3. Choose OK .
A corresponding dialog box appears.

4. Enter the input required and choose OK .
The "Insert Redefine" dialog box appears again.

5. Repeat Steps 2 through 4 until no more bytes are available or until the redefinition is complete.

Note:
To specify filler bytes, in the "Name" text box of the "Data Field Definition" dialog box, enter nX.

231Copyright © Software AG 2002

Inserting a HandleData Area Editor

Importing Data Fields into a Data Area

Data fields can be imported from any Natural object or DDM in any library or from a Predict server.

 To import selected data fields from a DDM into the active data area

1. From the Insert menu, choose Import .
2. The "Import" dialog box appears. The name of the current library is displayed in the "Library" list box.
3. If the object containing the fields you want to import is located in a different library, open the "Library" list

box and select the library.
4. From the "Type" group frame, select the type of Natural object from which you want to import fields.

A list of all Natural objects in the current library of the type you selected appears in the "Object List" box.
5. Select the object that contains the fields you want to import. The fields in the selected object appear in the

"Data Fields" list box.
6. Select the fields that you want to import.
7. Choose Import .
8. Choose Quit .

The dialog box closes and the fields appear in the upper left corner of the map editor window. You can
move the fields around within the map.

 To import selected data fields from a DDM into the active data area

1. Indicate where the imported fields should be placed by selecting a field in the data area. Imported fields are
placed before or after the currently selected field, depending on whether Insert before or Insert after is
selected in the Options menu.

2. From the Insert menu, choose Import . Or click the Import Data Field toolbar button.
The "Import Data Field" dialog box appears.

3. In the "Library" drop-down list box, select the library containing the DDM to be imported.
A list of all the cataloged DDMs in the selected library appears in the "DDM list" list box.

4. From the "Type" group frame, select "View". A list of all Natural DDMs in the current library appears in
the "Object List" box.

5. In the "Object List" list box, select the DDM that contains the fields you want to import. A list of all data
fields in the selected DDM appears in the "Data Fields" list box.

6. From the "Data Fields" list box, select the fields you want to import into the data area window.
7. Choose OK .

The "View Definition" dialog box appears.
8. In the "Name of View" text box, enter the name to be used for the view in the data area.
9. In the "Comment" text box, enter the comment to accompany the view in the data area.

10. Choose OK .
The dialog box closes and the fields are imported into the data area.

Importing Periodic Groups

If you are importing a periodic group, or a multiple-value field, the "Define Occurrences" dialog box appears
when you choose OK . You can change the lower bound and the number of occurrences. Then choose OK .

Copyright © Software AG 2002232

Data Area EditorInserting a Handle

Searching for Data Fields
In large data areas, it is often difficult to locate data fields. Using the search function you can flexibly search for
data field names. If it should be necessary to replace a frequently occurring field name with another, you can use
the combined search and replace function.

1. From the Edit menu, choose Find.
Or click the "Find the specified text" toolbar button.
Or press CTRL+F .
The "Find" dialog box appears.

2. In the "Find Field Name" text box, enter the string to be searched for.
3. If you want the search string to be found as a whole word only and not as part of other words, select the

"Match Whole Words Only" text box.
If this box is left unselected, all occurrences of the string will be found.

4. In the "Direction" group frame, click the search direction up or down to specify whether the search will be
conducted from the cursor position to the end of the object or from the cursor position to the beginning of
the object. The default is "Down".

5. Choose Find Next.
If no instance of the text searched for is found, a corresponding message is displayed.
If an instance of the search string is found, it will be displayed.

 To search for additional instances of the search string in the object

From the Edit menu, choose Find Next.
Or press F3.

Searching for and Replacing Data Field Names

 To search for and replace a text string in the active data area window

1. From the Edit menu, choose Replace.
Or click the Replace Text toolbar button.
Or press CTRL+H .
The "Replace Data Field" dialog box appears.

2. In the "Find Field Name" text box, enter the string to be searched for.
3. In the "Replace with" text box, enter the replacement string.
4. If the search string is to be found as a whole word only and not as part of other words, select the "Match

whole words only" text box.
If this box is left unselected, all occurrences of the string will be found.

5. In the "Direction" group frame, choose the search direction up or down to specify whether the search and
replace will be conducted from the cursor position to the end of the object or from the cursor position to the
beginning of the object. The default is "Down".

6. Choose Replace.
7. Choose Close to exit the dialog.

If no instance of the text searched for is found, a corresponding message is displayed.

Repeat Replace

To do so, from the Edit menu, choose Replace Next.
Or press CTRL+F3 .

233Copyright © Software AG 2002

Searching for Data FieldsData Area Editor

Replace All

With the "Replace All" function one can replace all strings at one time.

Note:
If "Replace All" is executed, all the found strings will be replaced. The "UNDO" function is not available.

Setting Editor Options
You can set preferences for various editor options. These settings are taken as default values each time you start
the Data Area Editor.

 To set options

From the Tools menu, select Options and then in the options dialog select the tab "Data Area Editor".

Insert before

Insert a field before the currently selected field.

Insert after

Insert a field after the currently selected field.

Status bar

Display/hide the status line at the top of the data area editor.

The status line displays (1) the number of bytes used by the data area in the source area, (2) the location of the
selected line, and (3) the total number of lines in the data area.

Note:
The data area editor can handle a maximum of 9999 lines. If this number is exceeded, an error occurs.

Column header

Display/hide the column header at the top of the data area definition.

Navigating
To navigate in the level order within the data area select the Next Level or Previous Level in the View menu,
or use CTRL+SHIFT+I or CTRL+SHIFT+J .

Copyright © Software AG 2002234

Data Area EditorSetting Editor Options

DDM Editor
The following topics are covered below:

The DDMs Window
Adding DDMs
Modifying DDM Contents
Searching for DDM Fields
Modifying DDM Fields
Editor Window Layout
Setting Editor Options

DDMs Window
The "DDMs" node within the logical view displays a list of all DDMs.

 To read the values of a DDM

1. In the "left window" choose "System Libraries" and open the folder "DDMs" in the "SYSEXDDM" library.
2. With a double-click open the desired file.

The following information is displayed for each DDM:

T - Type.
L - Level state.
Name - Field name.
F - Field format.
Len - Field length.
S - Suppresion.
D - Descriptor type.

A DDM (data definition module) is a set of field definitions for a database file. A DDM can be created from a
database file or from other DDMs.

DDMs are used to describe any type of database file, and are not restricted to Adabas database files. Some
options described in this section only pertain to Adabas, and can be ignored if a different database system is
being used.

235Copyright © Software AG 2002

DDM EditorDDM Editor

Adding DDMs
Adding DDMs from Adabas Databases
Adding DDMs from SQL Databases
Additional Options for VSAM Files

Adding DDMs from Adabas Databases

 To create a new DDM for an Adabas database

1. From the Object menu, choose New and then, from the cascading menu, choose DDM .
Or click the Create a new DDM toolbar button.
The "New DDM - Select Database" dialog box appears.

2. If the "DBID - Database Type " list box is active, you can choose a DBID from the list. You can also enter a
DBID in the range of 0 to 65535
(except 255) in the "DBID edit control" field. Click OK to acknowledge.When you enter "DBID", which
does not exist in the listbox, you can also select a type from the combobox. The "New Adabas DDM" dialog
box appears in which the file number can be entered.

3. In the "File number" field enter a file number in the range of 1 to 5000 and choose OK .
The DDM editor appears. If the database ID and file number correspond to an existing database file (FDT),
then the fields contained in that database file are displayed. The DDM can then be edited as required.

Adding DDMs from SQL Databases

 To create a new DDM for an SQL database

1. From the Object menu, choose New and then, from the cascading menu, choose DDM .
Or click the Create a new DDM toolbar button.
The "New DDM - Select Database" dialog box appears.

2. From the "DBID - Database Type" list box, choose an ID and choose OK .
A "New SQL DDM" dialog box appears. It contains the text boxes "Table Owner" and "Table Name" and is
used to select the SQL table to be added.

3. To list selected SQL tables, enter a pattern using the wildcard symbol ("*").
To list all SQL tables for selection, in the text boxes, leave the asterisks and choose OK .
A list box displays all SQL tables for selection according to the selection criteria specified above.

4. In the list box, select the desired SQL table and choose OK .
5. If you are accessing this SQL database for the first time in this session, then a "Database Logon" window

appears (dependant from the SQL database). Enter the user ID and password for the database and choose
OK .
The SQL table is read into the DDM editor. It can be edited as required.

A name is generated automatically for the SQL DDM. It is a combination of the table owner and the table name
and cannot be altered.

Note:
With the Natural program DDMGEN you can generate serveral DDMs in a particular library without using the
editor.(available only under a local environment)

Note:
When working under a remote environment, this function is available only if Natural for DB2 or Natural for
SQL/DS is installed. It is used to generate DDMs from DB2 or SQL/DS tables and is described in the
documentation Natural for DB2 and Natural for SQL/DS respectively.

Copyright © Software AG 2002236

DDM EditorAdding DDMs

Additional Options for VSAM Files

The additional options for VSAM files consist of two parts: VSAM File Information and VSAM File
Organization.

 To define the VSAM file information

1. In the "VSAM file name" text box, enter the DDNAME/FCT entry as defined to the TP monitor.
2. If the "VSAM view" check box is set, this DDM represents a logical DDM. If it is unchecked, it represents

a physical DDM.
The following applies only if the "VSAM view" check box is set:

3. In the "Logical related to FNR" edit control, you can enter the file number of the physical DDM from which
the logical file or DDM is derived.

4. In the "User defined prefix" edit control, you can enter the prefix value, which is to be assigned to the
logical file.

 To define the VSAM file organization

1. Set the type of the VSAM file by selecting one of the radio buttons.
2. If the "Compress file" check box is set, the file is to be compressed.
3. With the "Zones" combobox, you can select the zone for the VSAM file. ’F’ indicates, that all packed data

are written to the VSAM file with the zone X’0F’. ’C’ indicates, that all packed values are written to the
VSAM file with the zone X’0C’.

Note:
For more information concerning DDMs for VSAM, please refer to the Natural for VSAM documentation.

237Copyright © Software AG 2002

Additional Options for VSAM FilesDDM Editor

Data Conversion

Note: The following section applies under a local environment only!
If large and dynamic variables and/or fields are needed, please read the section DDM Generation and Editing for
Varying Length Columns in the section Large and Dynamic Variables/Fields in the Natural Programming
Reference documentation.

When a Natural program accesses data in a relational database, RDBMS-specific data types are converted to
Natural data formats, and vice versa. The tables in this section show how Natural data formats correspond to data
types in the following RDBMS’s:

Adabas D
Adabas SQL Server
DB2
INFORMIX
INGRES
ORACLE
SYBASE and Microsoft SQL Server

Adabas D

RDBMS Data Type Natural Format/Length

boolean L

char (n) An

date A10

fixed (p,q) Np-q,q

float F8

integer I4

long A, DYNAMIC

long varchar A, DYNAMIC

smallint I2

string An

time A8

timestamp A26

varchar An

Copyright © Software AG 2002238

DDM EditorData Conversion

Adabas SQL Server

RDBMS Data Type Natural Format/Length

char(5) A5

char(253) A253

decimal(5) N5

decimal(10.4) N(6.4)

double precision N(10.6)

float(1...21) N(2.6)

float(22...53) N(10.6)

integer I4

numeric(5) N5

numeric(10.4) N(6.4)

real N(2.6)

smallint I2

239Copyright © Software AG 2002

Data ConversionDDM Editor

DB2

RDBMS Data Type Natural Format/Length

date A10

decimal(5) N5

decimal(10.4) N(6.4)

fixed character(5) A5

float Fn

graphic 2*An

longvar A, DYNAMIC

longvarg A, DYNAMIC

large integer I4

scientific notation N(10.6)

small integer I2

special data A253

system date and time A10

time A8

timestmp A26

varchar An

varg 2*An

Copyright © Software AG 2002240

DDM EditorData Conversion

INFORMIX

RDBMS Data Type Natural Format/Length

byte Bn

char(n) An

date A10

datetime A26

decimal(p,q) Np-q,q

double precision F8

float F8

integer I4

interval A17

money N(14.2)

numeric Np-q,q

real F4

serial I4

smallint I2

smallfloat F4

text An

varchar(n) An

241Copyright © Software AG 2002

Data ConversionDDM Editor

INGRES

RDBMS Data Type Natural Format/Length

byte varying Bn

c(n) An

char (n) An

date A10

double precision F8

float F8

float4 F4

integer I4

integer1 I1

long byte B, DYNAMIC

long varchar A, DYNAMIC

money N(12.2)

object_key B16

real F4

smallint I2

table_key B8

text (n) An

varchar (n) An

Copyright © Software AG 2002242

DDM EditorData Conversion

ORACLE

RDBMS Data Type Natural Format/Length

char (n) An

date A10

decimal (p,q) Np-q,q

double precision F8

float F4

integer I4

long A, DYNAMIC

long raw B, DYNAMIC

number Nn

nvarchar2 An

raw (n) Bn

real F4

rowid An

smallint I2

varchar An

varchar2 (n) An

243Copyright © Software AG 2002

Data ConversionDDM Editor

SYBASE and Microsoft SQL Server

RDBMS Data Type Natural Format/Length

binary (n) Bn

bit N1

char (n) An

datetime A26

float F8

image Bn

int I4

money N(15.4)

nchar (n) An

nvarchar (n) An

real F4

smalldatetime A26

smallint I2

smallmoney N(6.4)

text An

timestamp B8

tinyint I2

varbinary (n) Bn

varchar (n) An

Copyright © Software AG 2002244

DDM EditorData Conversion

Modifying DDM Contents
Note:
The access to DDMs may be restricted when Natural Security has been installed. Within the DDM security
profile, there may be a definition of whether a DDM may be modified only by specific users (DDM modifiers) or
the owners of the security profile.

For further information refer to the Natural Security documentation for OpenVMS, UNIX and Windows NT,
under "DDM Restrictions" section DDM Security Profiles.

Selecting Fields
Selecting Attributes in Fields
Copying Fields
Cutting Fields
Pasting Fields
Deleting Fields
Inserting Fields

Selecting Fields

 To select one or more fields in the DDM editor

1. Put the mouse pointer on the left margin of the field and click.
Click on the first field to be selected and press SHIFT+DOWN ARROW or SHIFT+UP ARROW .
The field is highlighted.

2. To select more contiguous fields, press UP ARROW or DOWN ARROW .
The contiguous fields are highlighted.

 To select all of the fields in the DDM editor

From the Edit menu, choose Select all.
All of the fields in the editor are highlighted.

Selecting Attributes in Fields

 To select an attribute in a field in the DDM editor

Put the mouse pointer on the attribute and click.
Or use TAB , SHIFT+TAB , UP ARROW, and DOWN ARROW to navigate to the desired field.
The field attribute is highlighted and surrounded by a box.

245Copyright © Software AG 2002

Modifying DDM ContentsDDM Editor

Copying Fields

 To copy fields in the DDM editor

1. Select the fields you want to copy using the instructions found in Selecting Fields.
2. From the Edit menu, choose Copy.

Or click the Copy toolbar button.
Or press CTRL+C .
The fields are copied to the clipboard and can be pasted within the same DDM or another DDM. For
instructions on pasting fields, see Pasting Fields.

Cutting Fields

The cut function can be used to delete fields from a DDM or to move fields within/between DDMs. When text is
cut, it is taken from the DDM and placed on the clipboard. It remains there until the next cut or copy operation is
performed, at which time it is irretrievably discarded from the clipboard to make way for the next cut/copied
field.

 To cut fields in the DDM editor

1. Select the fields you want to cut using the instructions found in Selecting Fields.
2. From the Edit menu, choose Cut.

Or click the Cut toolbar button.
Or press CTRL+X .
The fields are cut to the clipboard and can be pasted within the same DDM or another DDM. For
instructions on pasting fields, see Pasting Fields.

Pasting Fields

The paste function is used to place a field at a specific position within a DDM after it has been copied or cut to
the clipboard from another position within the same DDM or another DDM. A field which has been copied or
cut to the clipboard can be pasted repeatedly without recopying it.

 To paste the fields in the DDM editor

1. Cut or copy DDM fields as described in Cutting Fields or Copying Fields.
2. If the fields are to be pasted in another DDM, open the DDM.
3. Select the field after/before which the copied/cut fields are to be pasted.

Whether the field is pasted before or after the selected field is determined by the "Insert" option specified in
the "Options" menu. For more information on the insert options, see Setting Editor Options.

4. From the Edit menu, choose Paste.
Or click the Paste toolbar button or press CTRL+V .
The field is pasted in the DDM.

5. To paste the same field again, repeat Steps 2 through 4.

Copyright © Software AG 2002246

DDM EditorCopying Fields

Deleting Fields

When a field is deleted, it is cut from the DDM but is not placed on the clipboard. There is no way to recover the
field once deleted.

 To delete fields from the DDM editor

1. Select the fields you want to delete using the instructions found in Selecting Fields.
2. From the Edit menu, choose Delete.

Or click the Delete toolbar button.
Or press DEL .
The fields are deleted from the DDM and cannot be recovered.

Inserting Fields

You add fields to a DDM by inserting them. The insert function has two different modes depending on the
context in which you use it.

If you are editing a DDM which belongs to an active database, then you must select a field from the existing
DDM for insertion. You can then modify this field.
If you are editing a DDM which does not belong to an active database, then you can insert an empty DDM
field which you fill as required.

In both cases, the field is inserted either before the selected field or after the selected field, depending on the
current editor option setting.

 To insert a field into the active DDM

1. In the DDM, select a field.
2. From the Field menu, choose Insert.
3. If you are editing a DDM which does not belong to an active database, then a blank line is inserted

before/after the selected field.
Enter a value for each field attribute.
Use TAB to move from one column to the next.
Whether the field is pasted before or after the selected field is determined by the Insert option specified in
the Options menu. For more information on the Insert option, see Setting Editor Options.

4. If you are editing a DDM which belongs to an active database, then a "Field Selection List" window appears
and one of the fields can be selected. The field selected in the field selection list is inserted before/after the
field selected in the DDM.

247Copyright © Software AG 2002

Deleting FieldsDDM Editor

Modifying DDM Fields
Modifying Extended Attributes under a Local Enviroment
Modifying Extended Attributes under a Remote Enviroment
Displaying Descriptor Information
Modifying a DDM Header
Modifying Coupling Information

Modifying Extended Attributes under a Local Enviroment

 To display and edit the extended attributes of the fields contained in the DDM

1. In the active "DDM" window, select a field.
2. From the Field menu, choose Extended fields.

Or click the Extended Fields toolbar button.
The "Extended Attributes" dialog box appears with the name of the selected field.

3. If a header exists for the selected field, it appears in the "Header" text box. You can edit the header, or add a
header if none exists.

4. If an edit mask exists for the selected field, it appears in the "Edit Mask" text box. You can modify the edit
mask, or add an edit mask if none exists.
The edit mask must conform with Natural syntax rules and be valid for the field length and format. (See the
section Edit Masks in the Natural Reference documentation.)

5. If a remark exists for the selected field, it appears in the "Remarks" text box. You can edit the remark, or
add a remark if none exists.

6. To save any changes you have made to the current field choose Save.
7. To view and edit extended attributes for the next field in the DDM, choose Next.
8. To view and edit extended attributes for the previous field in the DDM, choose Prev.
9. To save and validate all field modifications and return to the "DDM" editor window, choose OK .

Modifying Extended Attributes under a Remote Enviroment

Note:
Applies only for DDM’s generated for VSAM

 To display and edit the extended attributes of the fields contained in the DDM

1. In the active "DDM" window, select a field.
2. From the Field menu, choose Extended fields.

Or click the Extended Fields toolbar button.
The "Extended Attributes" dialog box appears with the name of the selected field.

3. If a header exists for the selected field, it appears in the "Header" text box. You can edit the header, or add a
header if none exists.

4. If an edit mask exists for the selected field, it appears in the "Edit Mask" text box. You can modify the edit
mask, or add an edit mask if none exists.
The edit mask must conform with Natural syntax rules and be valid for the field length and format. (See the
section Edit Masks in the Natural Reference documentation.)

5. If an alternate descriptor (Type A) or superdescriptor (Type X) is defined for the field, you can enter an
alternative index name.

6. If the field is a multiple or periodic group field, you can specify the number of occurences in the "Maximum
Occurence" edit control box.

7. If an alternate descriptor (Type A) or superdescriptor (Type X) is defined for the field, you can set the flags
"Upgrade", "Unique Key", "Sort" and "Null" in the "Extended Attributes" dialog box.

8. If the field has a primary or secondary key descriptor (Type A) or superdescriptor (Type X), you can select
the database shortname from the combo box.

Copyright © Software AG 2002248

DDM EditorModifying DDM Fields

9. If a remark exists for the selected field, it appears in the "Remarks" text box. You can edit the remark, or
add a remark if none exists.

10. To save any changes you have made to the current field choose Save.
11. To view and edit extended attributes for the next field in the DDM, choose Next.
12. To view and edit extended attributes for the previous field in the DDM, choose Prev.
13. To save and validate all field modifications and return to the "DDM" editor window, choose OK .

249Copyright © Software AG 2002

Modifying Extended Attributes under a Remote EnviromentDDM Editor

Displaying Descriptor Information

With this function you can display the makeup of a subdescriptor field or a superdescriptor field.

 To do so

1. In the descriptor field, select a descriptor type.
2. From the Field menu, choose Sub-/Superdescriptor Info.

Or click the Descriptor Definition toolbar button.
The "Descriptor Definition" dialog box appears with the name of the selected subdescriptor or
superdescriptor next to "Field name".

3. Choose OK to exit the field definition dialog.

Modifying a DDM Header

 To edit the DDM header information

1. From the DDM menu, choose DDM header.
Or click the DDM Header toolbar button.
The "DDM Header Information" dialog box appears with the names of the current DDM (Remote and
Local)
and library (Local only) appearing at the top of the box.

2. In the "DBID" drop down list box you can choose a DBID out of the list. You can also enter a DBID in the
range of 0 to 65535 (except 255) in the "DBID edit control" field. When you enter "DBID", which does not
exist in the listbox, you can also select a type from the "Type" combobox.

3. To change the file number to which the DDM is assigned, enter a new value in the range of 1 to 5000 in the
"File ID" edit control field.

4. In the "Default Sequence" text box, enter a short name as default sequence.
The system validates your entry based on the selected file number.
Note for Adabas only:
If the database is accessible, then the short name is verified to determine if it exists. If it does not exist, then
a list is presented with a selection of valid short names. If the database is not active, a list cannot be
generated.

5. Choose OK to save the new values.

Modifying Coupling Information

This option only applies for Adabas DDMs and has only informational character.

If you select this option, all files physically coupled to the displayed DDM are listed together with the short
names of the descriptors used for coupling.

 To define a coupled file

1. In the "File Name" text box enter the name of the coupled file.
2. In the "File Number" text box enter the number of the coupled file.
3. In the "From" edit control, enter the database short name, at which the file coupling begins.
4. In the "To" edit control, enter the database short name, at which the file coupling ends.
5. Press the "Insert" push button to add the defined entry to the list box.
6. Press the "Delete" push button to remove the selected entry from the list box.

For further information on physical file coupling please refer to the Adabas documentation.

Copyright © Software AG 2002250

DDM EditorDisplaying Descriptor Information

Searching for DDM Fields
In large DDMs, it is often difficult to locate DDM fields. Using the search function you can flexibly search for
DDM field names. If it should be necessary to replace a frequently occurring field name with another, you can
use the combined search and replace function.

1. From the Edit menu, choose Find.
Or click the Find the specified text toolbar button
or press CTRL+F .
The "Find" dialog box appears.

2. In the "Find Field Name" text box, enter the string to be searched for.
3. If you want the search string to be found as a whole word only and not as part of other words, select the

"Match Whole Words Only" text box.
If this box is left unselected, all occurrences of the string will be found.

4. In the "Direction" group frame, click the search direction up or down to specify whether the search will be
conducted from the cursor position to the end of the object or from the cursor position to the beginning of
the object. The default is "Down".

5. Choose Find Next.

If no instance of the text searched for is found, a corresponding message is displayed.

If an instance of the search string is found, it will be displayed.

 To search for additional instances of the search string in the object

From the Edit menu, choose Find Next.
Or press F3.

Searching for and Replacing DDM Field Names

 To search for and replace a text string in the active DDM window

1. From the Edit menu, choose Replace.
Or click the Replace Text toolbar button.
Or press CTRL+H .
The "Replace Data Field" dialog box appears.

2. In the "Find Field Name" text box, enter the string to be searched for.
3. In the "Replace with" text box, enter the replacement string.
4. If the search string to be found as a whole word only and not as part of other words, select the "Match

whole words only" text box.
If this box is left unselected, all occurrences of the string will be found.

5. In the "Direction" group frame, choose the search direction up or down to specify whether the search and
replace will be conducted from the cursor position to the end of the object or from the cursor position to the
beginning of the object. The default is "Down".

6. Choose Replace.
7. Choose Close to exit the dialog.

If no instance of the text searched for is found, a corresponding message is displayed.

251Copyright © Software AG 2002

Searching for DDM FieldsDDM Editor

Repeat Replace

To do so, from the Edit menu, choose Replace Next.
Or press CTRL+F3 .

Replace All

With the "Replace All" function one can replace all strings at one time.

Note:
If "Replace All" is executed, all the found strings will be replaced. The "UNDO" function is not available.

Copyright © Software AG 2002252

DDM EditorSearching for DDM Fields

Editor Window Layout
You can adapt several editor properties and functions to your own requirements. These options regulate how the
editor appears and how it reacts to various types of input. For example, you can specify whether or not you want
your editor window to display a status line or column header.

Setting Editor Options
Status Bar Information
Column Header

Setting Editor Options

DDM Editor Options

You can set preferences for various editor options. These settings are taken as default values each time you start
the DDM Editor.

 To set options

From the Tools menu, select Options and then in the options dialog select the tab "DDM Editor".

Insert before

Insert a field before the field currently selected.

Insert after

Insert a field after the field currently selected.

Status Bar

Display the status line at the top of the editor window. For information on the status line contents, see Status Bar
Information.

Column Header

Display the column header at the top of the editor window. For information on the column header, see Column
Header.

Short Names

Display the short name (the Adabas 2-character field name) for each field in the DDM. The short name appears
under the column header SN.

If you create a new DDM field manually and the database short names are switched OFF, the editor generates a
new "unused" short name for the field; this means that for this field there is no link between the database file and
the DDM. Therefore, if you have to create a new DDM field, use the "Insert field" function to link the new field
to the database file.

Status Bar Information

The status bar appears at the top of the window where the DDM is edited. It displays the following information:

253Copyright © Software AG 2002

Editor Window LayoutDDM Editor

Line - The current cursor line position and the total number of lines in the DDM.
DBID - The ID of the database from which the DDM is derived.
FNR - The number of the file of the database from which the DDM is derived.
Type - The Type of the database from which the DDM is derived.
Default Sequence - The field that controls the logical sequential reading of the file when no field is
specified in the READ statement of the Natural program.

Copyright © Software AG 2002254

DDM EditorStatus Bar Information

Column Header

The column header line contains the following column headers for the DDM fields:

Column
Header

Description

T

Adabas Field Type:
G - Group
P - Periodic group
M - Multiple-value field
Blank - Elementary field
* - Comment

L The level number assigned to the field.

SN

The 2-character field name (for ENTIRE-DB: 5-character field name).
Is displayed/hidden depending on whether short names option is selected or not.
For DL/I segment types, the 2-character code which is used in DL/I.
For VSAM files, see the documentation Natural for VSAM.

Name

A 3 - to - 32 character field name. This is the field name used within the Natural program to
reference the field.
Note:
In SQL DDMs the field name can be from 1 - to - 32 characters.
DL/I: The external field name may be up to 19 characters long.

F
The format of the field. For more information on Natural formats, see the Natural Reference
documentation.

Len

The standard length of the field. This length can be overridden by the user in a Natural
program.
For numeric fields (format N), length is specified as "nn.m", where "nn" represents the number
of digits to the left of the decimal point and "m" represents the number of digits to the right of
the decimal point.
Only for SQL DDMs: In the length input field, you can specify either the field length as a
numeric
value or enter the keyword "DYNAMIC" to specify that the field length is variable.
For further information see section Large and Dynamic Variables/Fields.

S

Null Value Suppression Option:

N - Field is defined with the Adabas null value suppression option. See note at end of table.
F - Field is defined with the Adabas fixed storage option. See note at end of table.
M - Not null.
Blank - Indicates no field suppression.

D

Descriptor Option:

D - Field is an Adabas descriptor.
S - Field is an Adabas subdescriptor or superdescriptor.
H - Field is an Adabas hyperdescriptor.
N - Field is an Adabas non-descriptor.
Blank - Field is a normal field.

Note:
The value N under column header S means that null values for the field are not stored in the Adabas inverted list
and will not be returned when the field is used to construct a basic search criterion (WITH clause of a FIND
statement), in a HISTOGRAM statement, or in a READ LOGICAL statement.

255Copyright © Software AG 2002

Column HeaderDDM Editor

Note:
The value F under column header S indicates that no compression is performed on the field. The field is stored
according to its standard length.

Note:
For more information concerning DDMs for VSAM, please refer to the VSAM mainframe documentation.

Note:
For more information concerning DDMs for DL/I, please refer to the DL/I mainframe documentation.

Copyright © Software AG 2002256

DDM EditorColumn Header

Dialog Editor
The following topics are covered below:

General Information
The Dialog Editor Window
Editing Dialogs
Dialog Wizard
Creating Dialog Elements
Importing Data Fields
Editing Dialog Elements
Organizing An Application’s Help File
Setting Editor Options
Attributes Windows for Dialogs and Dialog Elements
Dialog Boxes

See also:

Dialog Editor Accelerators

General Information
A single dialog is not only an isolated Natural object like a map or a program but can also represent an entire
event-driven application. The dialog editor can be used to create an application with the following basic
components:

Dialog(s)
Dialog elements
Attributes
Event handlers
Data areas (local and parameter); global data areas can be referenced
Inline subroutines

For a reference description of dialogs, dialog elements, attributes and event handlers, see the Dialog Components
documentation.

For an overview of dialog editor terminology, see Introduction to Event-Driven Programming.

You can open a new dialog editor window from the Natural base window by choosing "Object > New > Dialog".
Alternatively, you can edit an existing dialog by selecting it from the "Library Workspace" window.

Menus, toolbar buttons, and commands available with the dialog editor can be used to create the components of
an event-driven application and edit them in various editor windows. You can create or edit another dialog, or
invoke a different editor and create or edit a different type of object (for example, program, DDM or data area).

257Copyright © Software AG 2002

Dialog EditorDialog Editor

Dialog Editor Window
Changing the Initial Position of the Dialog
Changing the Initial Size of the Dialog
Selecting/Deselecting Dialog Elements
Aborting Mouse Operations
Creation Mode in Map Editor and Dialog Editor
Changing the Position of a Dialog Element
Changing the Size of a Dialog Element
Moving the Pointer
Simulating the Mouse with the Spacebar
Opening Windows and Dialog Boxes Using The Keyboard
Scrolling in a Dialog
Using the Clipboard

The dialog editor window includes a title bar, an information bar below the title bar, and a status line.

The title bar includes the name of the dialog (or "Untitled" if the dialog and the library have not been named).
For example:

MYDIALOG [MYLIB] - Dialog

The information bar below the title bar contains the following information:

Item Explanation

Status Indicates whether the dialog has been modified since it was saved.

Selected
(handle)

Indicates the handle name of the currently selected dialog element; the selection box displays the
handle names of all dialog elements in the dialog together with their level number in the dialog
element hierarchy. You can select another dialog element in the selection box.

x
X axis position of the currently selected dialog element relative to the upper left corner of the
client area of the parent dialog element (or dialog, for top-level dialog elements). Equivalent to
the current value of the RECTANGLE-X attribute.

y
Y axis position of the currently selected dialog element relative to the upper left corner of the
client area of the parent dialog element (or dialog, for top-level dialog elements). Equivalent to
the current value of the RECTANGLE-Y attribute.

w
Width of the currently selected dialog element. Equivalent to the current value of the
RECTANGLE-W attribute.

h
Height of the currently selected dialog element. Equivalent to the current value of the
RECTANGLE-H attribute.

Dialogs that are larger than the area shown in the dialog editor window can be scrolled using the scroll bars on
the right and at the bottom of the dialog editor window.

Copyright © Software AG 2002258

Dialog EditorDialog Editor Window

Changing the Initial Position of the Dialog

 To change the initial position of the dialog

1. Either click in its title bar and drag it to the desired location.
Or open its attributes window and type in the new coordinates (in pixels) in the "X" and "Y" fields.

 To open the attributes window

1. From the "Dialog" menu or from the dialog’s context menu, choose "Attributes"
or select the dialog and press ENTER.

Changing the Initial Size of the Dialog

 To change the initial size of the dialog

1. Either use the sizing border of the dialog.
Or open its attributes window and type in the new size (in pixels) in the "W" and "H" fields.

Selecting/Deselecting Dialog Elements

It is possible to select multiple dialog elements, but only one can be active at any time. The active selection is
delineated by black selection marks using which the control can be resized. The inactive selection is delineated
by grey selection marks.
Dialog Editor commands which are based on a single dialog element use the active selection, whereas other
(such as ’Delete’) use both the active and inactive selection. Clicking on a dialog element which is part of the
inactive selection makes it the active selection without deselecting any other dialog element.

 To select a dialog element

1. Click on an unselected dialog element, which becomes selected, while all other dialog elements become
deselected. To select an additional dialog element, hold down SHIFT and click on the dialog element. The
dialog element selected last becomes the active selection, the ones selected before are the inactive selection.
To deselect the dialog element(s), click on the blank space in the dialog window.

2. Or point to the background in the dialog window and then drag the pointer to enclose or partially enclose
the elements you want to select. To deselect or select additional elements, do the same as above while
pressing SHIFT.

3. Or press TAB to select the next dialog element in the control sequence.
4. Or press SHIFT+TAB to select the previous dialog element in the control sequence.
5. Or select a dialog element from the drop-down list in the status bar. You can do this by using the mouse or

by pressing F6 to switch to the drop-down list box and then using the arrow keys to select the dialog
element. To drop down the list and view the dialog elements to choose from, press F4. To deselect the
drop-down list box, press ESC or ENTER.

Note:
If one or more dialog elements are already selected, you can only additionally select other controls with the same
parent.

Aborting Mouse Operations

Any operation that is completed by releasing the left mouse button may be aborted by pressing the ESC key
before releasing the left mouse button.

259Copyright © Software AG 2002

Changing the Initial Position of the DialogDialog Editor

Creation Mode in Map Editor and Dialog Editor

If you create a dialog element by selecting "Insert" plus the dialog element type, the dialog editor is in "creation
mode". After creation, the dialog editor is no longer in creation mode; that is, you do not have to switch off
creation mode by clicking on the dialog element as you would in the map editor.

Changing the Position of a Dialog Element

To change the position of one or more dialog elements, select the dialog element(s). The name of the dialog
element selected first will be displayed in the status bar, together with its current position.

 To change position, you can use one of the following options:

1. Drag the dialog element to its new location using the mouse.
2. For each selected dialog element, open its attributes window and type in the new coordinates (in pixels) in

the "X" and "Y" fields.
3. Hold down SHIFT and press any arrow to move the selected dialog element(s) the number of pixels

specified in the "Tools Dialog Editor Grid Settings" dialog box.
4. Hold down SHIFT+CTRL and press any arrow to move the selected dialog element(s) by one pixel.

Changing the Size of a Dialog Element

 To change the size of one or more dialog elements, select the dialog element(s). You then have the
following options:

1. Point to one of the eight small black squares (the selection mark of the last selected dialog element). The
mouse pointer now indicates the direction into which you can resize the dialog element. Hold down the left
mouse button and drag (one of) the dialog element(s) to the desired size. If more than one dialog element is
selected, the other dialog elements selected are resized proportionally.

2. Open the dialog element’s attributes window and type in the new size (in pixels) in the "W" and "H" fields.
3. Choose "Control > Stretch", then the direction into which you can resize the dialog element. Then use the

mouse or the keyboard to continue the operation.

Moving the Pointer

 To move the pointer, you have three options:

1. Move the mouse; or
2. Press any arrow key to move the pointer by the number of pixels specified in the "Options Dialog Editor

Grid Settings" dialog box; or
3. Hold down CTRL and press any arrow key to move the pointer by one pixel.

Copyright © Software AG 2002260

Dialog EditorCreation Mode in Map Editor and Dialog Editor

Simulating the Mouse with the Spacebar

You can simulate mouse operations with the spacebar as described in the following table. Note that the pointer
must lie on the element to be manipulated.

Mouse Operation Keyboard Operation

Press left mouse
button

Press and hold down the spacebar.

Release left mouse
button

Release the spacebar.

Click mouse Press and release the spacebar.

Double-click mouse Press and release the spacebar twice.

Move dialog element
Move pointer to element, press and hold down the spacebar, press the appropriate
arrow key(s).

Select several dialog
elements

Move pointer to background, press and hold down the spacebar, press the appropriate
arrow key(s).

Resize dialog element
Move pointer to any black square of selected element, press and hold down the
spacebar, press the appropriate arrow key(s), release the spacebar.

Simulating a mouse double-click with the spacebar opens the attributes window for the dialog element on which
the pointer is positioned; if the pointer is not positioned on any dialog element, the dialog attributes window is
opened.

261Copyright © Software AG 2002

Simulating the Mouse with the SpacebarDialog Editor

Opening Windows and Dialog Boxes Using The Keyboard

Key
(Combination)

Opens

ENTER
Attributes window of the selected dialog element or of the dialog, if no dialog element is
selected.

CTRL+ALT+E "Event Handlers" dialog box for the dialog.

CTRL+SHIFT+E "Event Handlers" dialog box for the selected dialog element.

SHIFT+ENTER
"Event Handlers" dialog box for the selected dialog element or for the dialog, if no dialog
element is selected.

CTRL+ALT+S The dialog’s "Subroutines" dialog box.

CTRL+ALT+M Menu bar attributes window.

CTRL+ALT+T Toolbar attributes window.

CTRL+ALT+I Timer attributes window.

CTRL+ALT+L The dialog’s "Local Data Area" dialog box.

CTRL+ALT+P The dialog’s "Parameter Data Area" dialog box.

CTRL+ALT+G The dialog’s "Global Data Area" dialog box.

Scrolling in a Dialog

You can scroll in a dialog window if at least one dialog element is outside its scroll range. For you to be able to
scroll in a dialog, the dialog scroll bars must be active. To activate the dialog scroll bars, open the dialog
attributes window either by pressing ENTER or by double-clicking in the dialog. Then click either the
"Horizontal Scrollbar" or "Vertical Scrollbar" entry.

 To scroll with the mouse, you either:

1. Point to the scroll-bar slider and drag the slider in the desired direction; or
2. Point to the scroll-bar shaft and click; or
3. Point to one of the scroll-bar arrow buttons and hold down the left mouse button.

To scroll with the keyboard, you do not need a scroll bar. You have four options:

1. To simulate clicking into a vertical scroll bar, press the PAGE UP or PAGE DOWN keys; or
2. To simulate clicking into a horizontal scroll bar, press SHIFT+PAGE UP or SHIFT+PAGE DOWN; or
3. To simulate clicking on the corresponding vertical arrow button, press CTRL+PAGE UP or CTRL+PAGE

DOWN; or
4. To simulate clicking on the corresponding horizontal arrow button, press CTRL+SHIFT+PAGE UP or

CTRL+SHIFT+PAGE DOWN.

Using the Clipboard

Key (Combination) Function

DEL Delete the selected dialog element

CTRL+C Copy

CTRL+V Paste

Copyright © Software AG 2002262

Dialog EditorOpening Windows and Dialog Boxes Using The Keyboard

Editing Dialogs
Editing a Dialog’s Source Code
Editing a Dialog’s Attributes
Editing a Dialog’s Event Handlers
Defining a Dialog’s Menu Bar
Defining a Dialog’s Toolbar
Creating and Maintaining Timers for a Dialog
Adding a Comment Section to a Dialog
Defining a Parameter or Local Data Area for a Dialog
Selecting a Global Data Area for a Dialog
Defining an Inline Subroutine for a Dialog
Defining the Control Sequence in a Dialog

Editing a Dialog’s Source Code

 To edit a dialog’s source code

1. Load the dialog into the editor.
2. From the "Dialog" menu, choose "Source Code...".

Or press CTRL+ALT+C.
The dialog’s source code window appears and the program editor is loaded. This editor enables you to scan
for text strings, replace them, and so on. For more information on how to use the program editor, see The
Program Editor.
You can switch between the dialog editor and the program editor by selecting the source code window or
the dialog window. If you edit in either window, you need to synchronize your updates: (graphically)
modifying the dialog locks the source code window and you may not make changes there. Correspondingly,
if you change the source code, you may not make changes in the dialog window, which is locked. If your
editor is locked, its status bar displays "Locked".
If a source code window is open, but not active, you can activate it by choosing "Source Code..." from the
"Dialog" menu.
When you issue a command from the program editor window that affects the source code, such as "Save" or
"Run", the dialog editor updates itself automatically by scanning the source code, displaying the modified
dialog, and then regenerating the source code.When you issue a command from the dialog editor window
after you have modified the code in the source code window, you are prompted whether you want to update
the source code or not.

3. To stow any modified source code: from the program editor’s "Object" menu, choose "Stow".

Whenever you want to save a dialog under a new name, select "Save as" from the "Object" menu, where for the
"Save dialog as" dialog box appears.

263Copyright © Software AG 2002

Editing DialogsDialog Editor

Editing a Dialog’s Attributes

 To edit a dialog’s attributes

1. Load the dialog into the editor.
2. From the "Dialog" menu or from the dialog’s context menu, choose "Attributes...".

Or double-click on the dialog.
Or press ENTER.
The dialog’s attributes window appears. To find out what the entries in the attributes window mean, choose
"Help". For context-sensitive help, select the attribute entry and press F1.

3. Enter the desired attribute values.
4. Choose OK to confirm your changes.

Editing a Dialog’s Event Handlers

 To edit a dialog’s event handlers

1. Load the dialog into the editor.
2. From the "Dialog" menu or from the dialog’s context menu, choose "Event handlers...".

Or press CTRL+ALT+E or SHIFT+ENTER.
The dialog’s event handler section appears.

3. Select the type of event (such as BEFORE-OPEN or ERROR).
Or choose "New" to enter a user-defined event.
Or choose "Rename" to save a user-defined event with a new name.

4. Enter the desired event code in free form either in the edit window in the "Dialog Event Handler"window
itself, or using the Program Editor. To use the Program Editor, click the "Editor" push button, then close the
"Dialog Event Handler" window using the "OK" push button. This code will be executed when the event
occurs for the dialog. Note that if you have specified code in the before-any and after-any event sections,
this will be triggered before and after the code entered here. So if you need common event code, you only
have to enter it once in your dialog’s before-any and after-any event section.

5. Choose OK to save your code, if using the "Dialog Event Handler" window. If using the Program Editor,
the code can be saved by choosing "Save" from the "Object" menu, or by closing the Program Editor and
electing to save the changes when prompted.

Copyright © Software AG 2002264

Dialog EditorEditing a Dialog’s Attributes

Defining a Dialog’s Menu Bar

 To define a dialog’s menu bar

1. Load the dialog into the editor.
2. From the "Dialog" menu, choose "Menu bar...".

Or press CTRL+ALT+M.
A dialog box appears asking you whether you want to turn the dialog’s menu bar setting on.

3. Choose "Yes".
A blank default menu bar is added to the dialog and the menu bar’s attributes window appears. For more
information on the attributes window, see the section Menu Editor Window.

4. Choose OK to confirm your changes.

Defining a Dialog’s Toolbar

 To define a dialog’s toolbar

1. Load the dialog into the editor.
2. From the "Dialog" menu, choose "Toolbar...".

Or press CTRL+ALT+T.
A dialog box appears asking you whether you want to turn the dialog’s toolbar setting on.

3. Choose "Yes".
A blank default toolbar is added to the dialog and the toolbar’s attributes window appears. For more
information on the attributes window, see the section Toolbar Control Attributes Window. In this section
you will also find information on new toolbar control features.

4. Choose OK to confirm your changes.

Creating and Maintaining Timers for a Dialog

You use timers to trigger a dialog event periodically.

 To create and maintain a timer for a dialog

1. Load the dialog into the editor.
2. From the "Dialog" menu, choose "Timers...".

Or press CTRL+ALT+I.
The timer’s attributes window appears. For more information on the attributes window, see the section
Timer Attributes Window.

3. Choose OK to confirm your changes.

265Copyright © Software AG 2002

Defining a Dialog’s Menu BarDialog Editor

Adding a Comment Section to a Dialog

 To add a comment section to a dialog

1. From the "Dialog" menu, choose "Dialog comment...".
Or press CTRL+ALT+O.
The dialog comment section appears where you can enter your comments in free form. Please note that you
do not have to use the "/*" notation when entering comments in the text area. If you are listing your dialog
code, you will find your comment at the beginning.

2. Choose OK to save your comment.

Defining a Parameter or Local Data Area for a Dialog

 To define a local data area for a dialog

1. From the "Dialog" menu or from the dialog’s context menu, choose "Local Data Area...".
Or press CTRL+ALT+L.
The definition section for the local data area appears. In a local data area, you must include all the
user-defined variables or other variables that you want to use in an event handler code section or a
subroutine of the current dialog. Note that the dialog editor automatically generates the data definitions for
the dialog elements.
The "Using" button opens a dialog box that enables you to include existing inline data definitions.

2. Choose OK to save your data definition.

 To define a parameter data area for a dialog

1. From the "Dialog" menu, choose "Parameter Data Area...".
Or press CTRL+ALT+P.
The definition section for the parameter data area appears. In a parameter data area, you must include all the
parameters that you want to be passed on to the current dialog in an OPEN DIALOG or SEND EVENT
statement.
The "Using" button opens a dialog box that enables you to include existing inline data definitions.

2. Choose OK to save your data definition.

Selecting a Global Data Area for a Dialog

 To select a global data area for a dialog

1. From the "Dialog" menu, choose "Global Data Area...".
Or press CTRL+ALT+G.
A dialog box appears where you can select a global data area for the dialog.

2. Select an entry in the "Available Global Data Areas" list box.
3. Choose OK.

Copyright © Software AG 2002266

Dialog EditorAdding a Comment Section to a Dialog

Defining an Inline Subroutine for a Dialog

 To define an inline subroutine for a dialog

1. Load the dialog into the editor.
2. From the "Dialog" menu or from the dialog’s context menu, choose "Inline Subroutines...".

Or press CTRL+ALT+S.
The "Dialog inline subroutines" code section appears.

3. Choose "New" to enter a new subroutine.
Or select the name of an existing subroutine you want to edit.
If you have chosen "New", a dialog box prompts you for a name.

4. Enter the name of the new subroutine.
5. Choose OK.
6. Enter the desired subroutine code in free form, either directly in the window itself or using the Program

Editor by clicking the ’Editor’ push button, then close the window using the’OK’ push button.
7. Choose OK to save your code.

Defining the Control Sequence in a Dialog

The control sequence is the keyboard navigation sequence in which the end user will go through the dialog
elements.

 To define the control sequence of a dialog

1. From the "Dialog" menu, choose "Control sequence", or press CTRL+ALT+Q
The control sequence is displayed as a number at the top left corner of each dialog element. The editor is
now in navigation sequence definition mode.

2. Use the mouse to select the dialog elements in the desired sequence.

If you do not select a dialog element before enabling navigation sequence definition mode, the next dialog
element that you select will be the first in the navigation sequence. Its number is greyed and you can select the
next dialog element in the sequence, and so on.

If you do select a dialog element, you can redefine the sequence from this element onwards.You can also select a
dialog element when in control sequence editing mode without resequencing it by holding down the SHIFT key
whilst making the selection. This is especially useful if the selected dialog element is one of the last elements in
the sequence - you do not have to redefine the sequence of all preceding dialog elements. Note that instead of
selecting each dialog element with the mouse, you can also select them from the selection box in the status bar of
the dialog editor. This selection box always shows the dialog elements in their control sequence.

You can exit control sequence editing mode implicitly, by selecting another command (e.g. ’Insert Push Button’)
or explicitly by selecting the ’control sequence’ menu of this again, or simply by pressing ESC.

Note:
The control sequence also decides the order in which the dialog elements overlap.

Dialog Wizard
The Dialog Wizard is a tool for creating dialogs for specific purposes. The defined dialogs can have several
layouts that adapt to desired requirements.

The generated dialog can be modified with the dialog editor. In the dialog there are User Code Sections with
sample coding for data retrieval and result flagging. These sections should be replaced by user-specific
requirements.

267Copyright © Software AG 2002

Dialog WizardDialog Editor

 To activate the Wizard:

From the "Menu Bar" select "Object" > "New" > "Dialog Wizard".

Frame Dialog

In the Frame Dialog Wizard a new dialog can be created in a Frame Layout. The structure of the Frame Dialog
for example is applicable in an application frame.

A default Frame Dialog is generated if you define nothing in the wizard.

Selection Dialog

In the Selection Dialog Wizard a new dialog can be created in a Selection Layout. The structure of a Selection
Dialog for example is applicable for reading, saving or opening objects.

A default Selection Dialog is generated if you define nothing in the wizard.

Tab Dialog

In the Tab Dialog Wizard a new dialog can be created in a Tab Layout. The structure of a Tab Dialog for
example is applicable in a help dialog or for option settings.

A default Tab Dialog is generated if you define nothing in the wizard.

Copyright © Software AG 2002268

Dialog EditorDialog Wizard

Creating Dialog Elements
 To create a dialog element

1. From the "Insert" menu, choose one of the following entries, depending on which dialog element type you
wish to create:
"ActiveX control","Bitmap", "Canvas", "Control Box", "Edit area", "Group frame", "Input field", "List
box", "OLE container", "Push button", "Radio button", "Scroll bar", "Selection box", "Table", "Text
constant", "Toggle button".
After one of these items has been selected, you are in creation mode. If you move the mouse within the
dialog window, the cursor shape is a cross with a minimized graphical representation of the dialog element
to be created.

2. Move the cursor to the desired upper left position of the dialog element.
3. Either hold down the left mouse button, drag the cursor until you have created the desired outline of the new

dialog element and release the mouse button.
Or click or press ENTER.
This creates a dialog element with a default size.

The control sequence is the keyboard navigation sequence in which the end user will go through the dialog
elements. It is decided by the order in which you create the dialog elements. When you create a new dialog
element, it is inserted after the active selection and any of its successive direct and indirect children if the active
selection shares the same parent as the newly-inserted control. If not, the insertion point is based on the last
dialog element with the same parent which precedes the active selection in the control sequence. If there is no
such control, or if no controls are selected, the new control is inserted immediately before the first control with
the same parent, or immediately after its container if no such control exists. You can modify this default
sequence by choosing "Dialog > Control Sequence". For more information, see the section Defining the Control
Sequence in a Dialog.

Note:
The same rules apply to dialog elements created by pasting them from the clipboard.

If you insert a new dialog element dynamically by using the PROCESS GUI statement action ADD, you decide
its position in the navigation sequence by creating the dialog element and setting the SUCCESSOR attribute to
the handle value of its successor.

269Copyright © Software AG 2002

Creating Dialog ElementsDialog Editor

Importing Data Fields
You can import a data field from an object in your Natural environment into an input field control or a selection
box control which you create at the same time.

 To import data fields

1. From the "Insert" menu, choose "Import".
2. From the "Import" submenu, choose "Input field" or "Selection box".

The "Import Data Field" dialog box appears.
3. Enter the library and the Natural object type.

A list of objects appears.
4. Choose an object.

A list of data fields appears.
5. Choose the data field(s) you want to use for creating a dialog element.
6. Choose "Import".

The selection box control or the input field control is created with the selected data field(s). Note that the fields
themselves are not imported.

Copyright © Software AG 2002270

Dialog EditorImporting Data Fields

Editing Dialog Elements
Cutting a Dialog Element
Copying a Dialog Element
Pasting a Dialog Element from the Clipboard
Deleting a Dialog Element
Selecting all Dialog Elements with the same Parent in a Dialog
Editing a Dialog Element’s Attributes
Editing a Dialog Element’s Event Handlers
Unifying the Size of Several Dialog Elements
Aligning the Position of Several Dialog Elements
Unifying the Spacing Between Several Dialog Elements
Stretching a Dialog Element

To edit one or several dialog elements as a whole, you can use the entries provided in the "Edit menu". These
entries enable you to reuse dialog elements for similar contexts instead of creating them from scratch.

Cutting a Dialog Element

 To cut a dialog element

1. Select the dialog element.
2. From the "Edit" menu or from the dialog element’s context menu, choose "Cut".

Or click the "Cut" toolbar button.
Or press SHIFT+DEL or CTRL+X.
The selected dialog element and any of its child dialog elements is cut to the clipboard for pasting
elsewhere, for example into other dialogs.

Note:
You can also select several or all dialog elements in a dialog and cut them all at once.

Copying a Dialog Element

 To copy a dialog element

1. Select the dialog element.
2. From the "Edit" menu or from the dialog element’s context menu, choose "Copy".

Or click the "Copy" toolbar button.
Or press CTRL+INS or CTRL+C.

The selected dialog element is copied to the clipboard for pasting elsewhere. If the selected dialog element has
child dialog elements you will be prompted as to whether these should also be copied or not.

Note:
You can also select several or all dialog elements in a dialog and copy them all at once.

Pasting a Dialog Element from the Clipboard

 To paste a dialog element from the clipboard

From the "Edit" menu or from the dialog element’s context menu, choose "Paste".
Or click the "Paste" toolbar button.
Or press SHIFT+INS or CTRL+V.

271Copyright © Software AG 2002

Editing Dialog ElementsDialog Editor

The dialog element in the clipboard is pasted into the current container in the current dialog. The current
container is the lowest level dialog element containing the selected dialog elements which is not the selected
dialog element itself. If you are pasting a dialog element back into the same container from which it was copied,
the original dialog element is overlaid by the copy. You then have to move the pasted dialog element to its new
location. (The pasted dialog element is preselected by default.) Note that if it is desired to paste dialog elements
into an empty container, a dummy child dialog element must be created and selected first.

Note:
You can paste several or all dialog elements in a dialog if you have cut or copied them to the clipboard at once.

Deleting a Dialog Element

 To delete a dialog element

1. Select the dialog element.
2. From the "Edit" menu or from the dialog element’s context menu, choose "Delete".

Or click the "Delete" toolbar button.
Or press DEL.
A dialog box appears asking you to confirm the deletion.

3. Choose "Yes".

The selected dialog element is deleted, together with any of its child dialog elements.

Note:
You can also select several or all dialog elements in a dialog and delete them all at once.

Selecting all Dialog Elements with the same Parent in a Dialog

 To select all dialog elements in a dialog

From the "Edit" menu or from the dialog element’s context menu, choose "Select all".
If a dialog element is selected, all unselected dialog elements with the same parent become selected. If no
dialog element is selected, all top-level dialog elements become selected.

Copyright © Software AG 2002272

Dialog EditorDeleting a Dialog Element

Editing a Dialog Element’s Attributes

 To edit a dialog element’s attributes

1. Select the dialog element.
2. From the "Control" menu or from the dialog element’s context menu, choose "Attributes...".

Or double-click on the dialog element.
Or press ENTER.
The dialog element’s attributes window appears. To find out what the entries in the attributes window mean,
choose "Help". For context-sensitive help, select the attribute entry and press F1.

3. Enter the desired attribute values.
4. Choose OK to confirm your changes.

Editing a Dialog Element’s Event Handlers

 To edit a dialog element’s event handlers

1. Select the dialog element.
2. From the "Control" menu or from the dialog element’s context menu, choose "Event handlers...".

Or press SHIFT+ENTER.
The dialog element’s event handler section appears.

3. Select the event (such as click or double-click).
4. To view the event parameters of an ActiveX control, click the "Event Info..." button.
5. Enter the desired event code in free form, either directly in the window itself or by using the Program Editor

by clicking the ’Editor’ push button, then closing the window with the ’OK’ push button.
Or choose "Use" to enter a user-defined event.
This code will be executed when the event occurs for the dialog element. Note that if you have specified
code in the before-any and after-any event sections, this will be triggered before and after the code entered
in Step 4. So if you need common event code, you only have to enter it once in your dialog’s before-any
and after-any event section.

6. Choose OK to save your code.

Unifying the Size of Several Dialog Elements

 To unify the size of several dialog elements

1. Select all dialog elements whose size is to be unified.
2. Select the dialog element that has the reference width or height.
3. From the "Control" menu, choose "Unify size".
4. From the "Unify size" submenu, choose "Width".Or choose "Height".

The dialog elements are aligned to the width or height of the reference dialog element.

273Copyright © Software AG 2002

Editing a Dialog Element’s AttributesDialog Editor

Aligning the Position of Several Dialog Elements

 To align the position of several dialog elements

1. Select all dialog elements whose position is to be aligned.
2. Select the dialog element that has the reference position.
3. From the "Control" menu, choose "Align position".
4. From the "Align position" submenu, choose "Left".

Or choose "Center (horizontal)".
Or choose "Right".
Or choose "Top".
Or choose "Center (vertical)".
Or choose "Bottom".

The dialog elements are aligned to the position of the reference dialog element.

Unifying the Spacing Between Several Dialog Elements

 To unify the spacing between several dialog elements

1. Select all dialog elements between which you want to unify spacing.
2. From the "Control" menu, choose "Unify spacing".
3. From the "Unify spacing" submenu, choose "Horizontal".

Or choose "Vertical".
The spaces between the dialog elements are now distributed evenly.

Stretching a Dialog Element

 To stretch a dialog element in a particular direction

1. Select the dialog element to be stretched.
2. From the "Control" menu, choose "Stretch".
3. From the "Stretch" submenu, choose a direction, for example "North west".

A cursor appears indicating that you can stretch the dialog element.
4. Drag the cursor with the mouse until your dialog element has the desired size.
5. Click with the left mouse button to fix the dialog element’s size.

The dialog element is now resized; as it is still selected, you can edit it further.

Note:
You can also select several dialog elements and stretch them all at the same time.

Copyright © Software AG 2002274

Dialog EditorAligning the Position of Several Dialog Elements

Organizing An Application’s Help File
Using The Help Organizer’s Main Dialog
Generating Help IDs
Extending A Help ID Definition
Editing The Global Topic List

Help files provide online information about an application’s functions.

Whenever an end user must be given general information on how your application is structured, a help text is
needed that can be invoked from within the application.

Whenever an end user must be given specific information on what may be entered in an input field control, for
example, a short text is needed that can be accessed from the input field control.

To keep an overview of all the different help sections in an application, Natural provides you with the help
organizer. With this organizer,

you assign a help ID (HELP-ID attribute value) to a specific dialog element;
you write the help text for this help topic; this text is converted to a .rtf file to be processed by the help
compiler;
you optionally define the help topic’s keywords;
you optionally assign a help compiler macro to the help topic;
and you optionally add a comment for your internal documentation purposes.

It is also possible to use several help files for one application. In this case, you must specify the help file in the
dialog’s attributes window. You can also use the same help file for more than one dialog.

The .rtf file and the corresponding help topic information created with the help organizer must be converted to a
.hlp file. In this way, your end user can retrieve help information from the Natural application. This conversion
into a .hlp file is done with the help compiler.

The Natural installation procedure also installs a version of the Microsoft help compiler on your disk. You will
find the help compiler in a subdirectory of drive-letter:\SAG\product-acronym\version-number\Natural which is
called HCn where n depends on the operating system on which Natural has been installed.

For more information on how to use the help compiler and on how to create the .hlp file from your .rtf file,
please refer to the READn.TXT file in this directory where n is depending on the operating system.

There is also an example of a small help file which was generated with the help organizer.

This example help file is called BROWHLP.HLP and is located in the directory referred to by the environment
variable NATGUI_BMP. You can find the files BROWHLP.RTF, BROWHLP.HPJ and README.TXT in the
following directory:

drive-letter:\SAG\product-acronym\version-number\Natural\SAMPLES\HELP\

275Copyright © Software AG 2002

Organizing An Application’s Help FileDialog Editor

 To see a demonstration of the example help file

1. Go to library SYSEXEVT.
This library contains a browse application with a dialog called BROWSE1.

2. Start the SAG-DEMO-DB database. This is a prerequisite to running the browse application.
3. Start dialog BROWSE1 to run the application.
4. Press F1 with the focus being on various elements of the application.

 To see a demonstration of the help organizer (looking at the contents of BROWHLP.RTF)

Follow the instructions in the README.TXT file.

 For each help topic you create, you can in general follow this sequence of steps

1. Invoke the help organizer’s main dialog.
2. Select a dialog element.
3. Generate a new help topic ID or enter the ID of your choice. To generate a help topic ID automatically, the

help ID must be "0" (default). To enter a help topic ID, either you fill in the "Help ID" entry of the dialog or
dialog element, or you fill in the help topic ID in the "Online Help Organizer" main dialog.

4. Return to the "Online Help Organizer" dialog.
5. Assign the help topic ID.
6. Enter the external definitions for the help topic ID, such as the help text and the topic.
7. Return to the "Online Help Organizer" dialog.
8. Go to the topic list and see whether this new help topic fits your general organization of the help file to be

created.
9. Return to the "Online Help Organizer" dialog.

10. Save everything.

These steps are described in detail in the following sections.

Copyright © Software AG 2002276

Dialog EditorOrganizing An Application’s Help File

Using The Help Organizer’s Main Dialog

 To invoke the "Online Help Organizer" dialog

From the "Dialog" menu, choose "Help organizer..."
Or press CTRL+ALT+H.

The main dialog appears. It contains the following:

Entry Meaning

Caption
Online Help Organizer - pathname (location of the .rtf file to be generated from a help
topic text).

Help IDs in Dialog Name of the current dialog. You organize your Help IDs dialog by dialog.

Control Name
The handle name or the handle names of all dialog elements inside the dialog.
You can not change these handle names here.

Help ID

The Help ID attribute value for the dialog or dialog element. You may assign several Help
ID values to one dialog element. If there are several Help IDs, you can view them by
pulling down the drop-down list box. If you select a Help ID, either you can extend its
definition or you can enter a new Help ID of your choice.

Topic
The name of the help topic. You can not edit this name here, but in the help topic’s
extended definition dialog box.

Help text

The help text. You can edit this text here or in the help topic’s Extended Definition dialog
box.
Note:
It is possible to enter RTF formatting commands if the help text begins with a "{\" and
ends with a "}". This signifies "raw mode". In raw mode, special RTF characters (’{’, ’}’
and ’\’) must be escaped by a preceding backslash if they are to be treated as literal
characters. However, even in raw mode, it is not necessary to enter line feed (\line)
commands explicitly.

Action:

New ID...
Invokes the "Help ID Generation" dialog where you can generate a Help ID for those
dialogs or dialog elements for which the Help ID is still "0" (default).

Ext Def... Invokes the "Extended Definitions - (...)" dialog.

Clear
Resets the currently selected Help ID to zero and clears the help topic text that was
associated to the Help ID.

Topic List Invokes the "Global Topic List" dialog.

OK

Saves your settings, exits the dialog and generates the necessary help files. These files
include a "helpfilename.rtf" help topic file, a "helpfilename.hpj" help project file, a
"helpfilename.cnt" contents file, a "helpfilename.hm" Help ID mapping file and a
"helpfilename.cshelp.cnt" contents include file.
The help project and contents files are only generated if they do not already exist,
ensuring that any changes made directly to these files (e.g. via a text editor) are not lost.

Apply
Saves your settings and generates the help files (as for the OK pushbutton) without exiting
the dialog. Allows you to save the changes and switch to and from the help compiler
without having to leave and re-enter the help organizer.

Cancel Exits the dialog without saving the settings.

Help Provides online help on the dialog.

277Copyright © Software AG 2002

Using The Help Organizer’s Main DialogDialog Editor

The Online Help Organizer dialog may be re-sized. The position and dimensions are saved between sessions in
the user profile (.PRU).

Copyright © Software AG 2002278

Dialog EditorUsing The Help Organizer’s Main Dialog

Generating Help IDs

 To generate a new help topic ID

1. From the "Help Organizer Main" dialog, select a dialog or dialog element and choose the "New ID" button.
The "Help ID Generation" dialog appears.

2. (Optional) Enter a starting value which Natural will use to generate the next new ID.
This Help ID is valid only for the current dialog. To avoid duplicate Help IDs in the same Natural
application, you define exclusive numerical ranges for the help topic IDs of a dialog. The starting value
enables you start off the Help IDs at the beginning of the numerical range. You can, for example, decide
that your dialog uses the range of 50 to 60. You enter "50" as the starting base and your first generated ID
will be 50.

3. Choose OK to generate the Help ID.
Or choose "Cancel" to exit the dialog without generating.

Note:
You can also generate Help IDs for several dialogs/dialog elements at once. To do so, you must select several
dialogs/dialog elements in the "Online Help Organizer" dialog. The IDs are then generated sequentially starting
from the lowest ID available.

Extending A Help ID Definition

 To extend a help topic ID’s definition

From the "Help Organizer Main" dialog, select a Help ID and choose the "Ext Def" button.

The "Extended Definitions" dialog appears. It contains the following:

Entry Meaning

Caption Extended Definitions - [current HELP-ID]

Topic: Enter the heading of the help topic here.

Help Text: Enter the text of the help topic here.

Keywords:
Enter the keywords of your help topic here. Keywords enable the end user of your Natural
application to find the topic by selecting the "Search" button in the "Help" window.

Browse
sequences:

Enter your browse sequences here. A browse sequence is useful if you want to group your help
topics by subject. Browse sequences can also consist of an optional alphanumeric sort key,
separated from the browse sequence name by a colon (e.g. mysequence:sort_key).

Macro: Enter the name of your help macro here. Help macros enable you to customize your help.

Comment: This section is for your internal help project documentation.

OK Saves your settings and exits the dialog.

Cancel Exits the dialog without saving the settings.

Help Provides online help on the dialog.

This information will be part of the .rtf file to be generated and will be interpreted by the help compiler.

The Extended Definitions dialog may be resized. The position and dimensions are saved between sessions in the
user profile (.PRU).

279Copyright © Software AG 2002

Generating Help IDsDialog Editor

Editing The Global Topic List

 To edit the global topic list

From the "Help Organizer Main" dialog, choose the "Topic List" button.

The "Global Topic List" dialog appears. It contains the following:

Entry Meaning

Caption Global Topic List - [File: selectedfilepath]

Line in the
table

Each line in the table represents a help topic. It lists its Help ID, the topic name and the
extended definitions associated with it.

Action:

Undo Undoes the last editing action, especially deletion.

Delete If a help topic is selected, this topic is deleted.

Ext Def... Invokes the "Extended Definitions" dialog for the selected help topic.

Move Entry Allows you to change the sequence of help topic entries.

MoveUp Moves the selected help topic upwards within a browse sequence of help topic entries.

MoveDown Moves the selected help topic downwards within a browse sequence of help topic entries.

OK Saves your settings and exits the dialog.

Cancel Exits the dialog without saving the settings.

Help Provides online help on the dialog.

This list contains all of the topics in the help file. Note that the topics are always maintained in browse sequence
order.

The Global Topic List dialog may be resized. The position and dimensions are saved between sessions in the
user profile (.PRU).

Copyright © Software AG 2002280

Dialog EditorEditing The Global Topic List

Setting Editor Options
You can set preferences for various editor options. These settings are taken as default values each time you start
the Dialog Editor.

The following options are available:

Enabling The Enhanced Listing Option
Displaying Or Hiding The Status Bar
Turning The Crosshair Cursor On And Off
Turning Autoscroll On And Off
Displaying The Dialog Inside Or Outside The Editor
Displaying Bitmaps
Displaying Or Hiding The Grid
Customizing The Grid
Saving Editor Options With A Particular Dialog

You can adapt several editor options to your personal requirements. These options regulate how the editor
appears and reacts to various types of input. For example, you can specify whether or not you want your editor
window to display a status bar.

Enabling The Enhanced Listing Option

The enhanced listing option of a dialog enables you to view the dialog source in a format that is more readable
than the traditional Natural source code. If you choose to display the code listing after receiving a compiler error,
you will get the code generated for the compiler. By default, the dialog editor enables enhanced list mode.

Note:
Enabling this option is only meaningful if you list or print "non-enhanced" dialog sources, not for the new dialog
source format. Note also that if you have saved your dialog sources in non-enhanced format and the enhanced
listing option is enabled, any Natural runtime error message will contain an incorrect line number. To ensure that
you get the correct line number, disable the enhanced listing option. As under Natural for Windows and
Unix/OpenVMS Version 4.1, dialog sources are always saved in enhanced format, this line number
inconsistency does not exist, and the older (’22C’) format is only seen if old dialogs in this format are listed or
printed outside of the dialog editor.

 To view the enhanced listing

From the "Object" menu, choose "List".

 To enable enhanced dialog list mode

1. From the "Options" dialog, check the "Dialog Editor" tab.
2. Check the "Enhanced dialog list mode" toggle button.

281Copyright © Software AG 2002

Setting Editor OptionsDialog Editor

Displaying Or Hiding The Status Bar

By default, the dialog editor displays the status bar.

 To display or hide the status bar

1. From the "Options" dialog, choose "Dialog Editor" tab.
2. Check or uncheck the "Status Bar" toggle button.

Either the toggle button now has a check mark to indicate display, or the check mark is no longer displayed to
indicate hiding.

Turning The Crosshair Cursor On And Off

By default, the dialog editor displays the system cursor. If the crosshair is turned on, and you create or move
dialog elements, lines appear that extend to the window borders.

 To display or hide the cross-hair cursor

1. From the "Options" dialog, choose "Dialog Editor" tab.
2. Check or uncheck the "Crosshair" toggle button.

Either the toggle button now has a check mark to indicate display, or the check mark is no longer displayed to
indicate hiding.

Turning Autoscroll On And Off

If the toggle button is checked, the Dialog Editor window is automatically scrolled to make the dialog visible if
the dialog is moved wholly or partially outside the current visible range.

1. From the "Options" dialog, choose "Dialog Editor" tab.
2. Check or uncheck the "Autoscroll" toggle button.

Either the toggle button now has a check mark to indicate display, or the check mark is no longer displayed to
indicate hiding.

Copyright © Software AG 2002282

Dialog EditorDisplaying Or Hiding The Status Bar

Displaying The Dialog Inside Or Outside The Editor

The dialog editor allows you to specify whether the current dialog is displayed inside the dialog editor window
(default). Displaying the dialog outside enables more space for editing. Please be careful when setting this option
to "off". Your dialog may disappear from view if its RECTANGLE-X and RECTANGLE-Y values denote a
position outside the screen. Another consequence is that the dialog will overlap any code listing window that
appears.

 To display the dialog inside or outside the editor

1. From the "Options" dialog, choose "Dialog Editor" tab.
2. Check or uncheck the "Display dialog inside editor" toggle button.

Either the toggle button now has a check mark to indicate display inside, or the check mark is no longer
displayed to indicate display outside.

Displaying Bitmaps

By default, the dialog editor loads and displays the bitmaps in the dialog elements to show how they appear at
runtime. If you switch this option off, the dialog element displays the bitmap name only, which improves editing
performance.

 To turn the bitmap display on or off

1. From the "Options" dialog, choose "Dialog Editor" tab.
2. Check or uncheck the "Display bitmaps" toggle button.

Either the check box now has a check mark to indicate display, or the check mark is no longer displayed to
indicate unloading of bitmaps.

Displaying Or Hiding The Grid

The dialog editor enables you to display a grid to help align dialog elements. By default, the grid is not
displayed.

 To display the grid

1. From the "Options" dialog, choose "Dialog Editor" tab.
2. Check or uncheck the "Display Grid" toggle button.

Either the check box now has a check mark to indicate display, or the check mark is no longer displayed to
indicate hiding.

283Copyright © Software AG 2002

Displaying The Dialog Inside Or Outside The EditorDialog Editor

Customizing The Grid

 To customize the grid

1. From the "Options" dialog, choose "Dialog Editor" tab.
2. Choose the "Lines" option button (which will result in a classical grid).

Or choose the "Dots" option button (which will result in a dots pattern).
3. Choose the "Color" command button.

The operating system’s "Color" dialog box is displayed.
4. Select a color.

Or define a custom color.
5. Choose OK. A sample rectangle of the chosen colour is displayed.
6. For the horizontal grid (X) axis, enter the number of pixels (steps) between two lines or dots.
7. For the x axis, enter a numerical starting value for the grid.
8. Choose the "Snap to Grid" check box if you want the dialog elements to snap to the grid.
9. Repeat Steps 7 to 9 for the y axis.

10. Choose OK to save the grid settings and return to the dialog editor.

Saving Editor Options With A Particular Dialog

The dialog editor enables you to save the option settings with the dialog in order to customize editor usage to
individual dialogs.

 To save the editor options with the current dialog

1. From the "Options" dialog, choose "Dialog Editor" tab.
2. Check the "Save settings with dialog..." check box.

The options will be saved together with the dialog itself whenever any dialog is saved. Dialogs saved whilst this
option was inactive will continue to use the current option settings.

Copyright © Software AG 2002284

Dialog EditorCustomizing The Grid

Attributes Windows for Dialogs and Dialog Elements
This section explains the editing options in the attributes windows for dialogs and dialog elements.

ActiveX Control Attributes Window
ActiveX Control Property Pages
Bitmap Control Attributes Window
Canvas Control Attributes Window
Control Box Control Attributes Window
Dialog Attributes Window
Dialog Context Menus Window
Edit Area Control Attributes Window
Group Frame Control Attributes Window
Input Field Control Attributes Window
List Box Control Attributes Window
Menu Editor Window
OLE Container Control Attributes Window
Push Button Control Attributes Window
Radio Button Control Attributes Window
Scrollbar Control Attributes Window
Selection Box Control Attributes Window
Signal Attributes Window
Status Bar Control Attributes Window
Status Bar Control Attributes Subwindow
Table Attributes Window
Text Constant Control Attributes Window
Timer Attributes Window
Toggle Button Control Attributes Window
Toolbar Attributes Window
Toolbar Control Attributes Window
Toolbar Control Attributes Subwindow

ActiveX Control Attributes Window

 Accessible Using

1. Double-click on the ActiveX control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

285Copyright © Software AG 2002

Attributes Windows for Dialogs and Dialog ElementsDialog Editor

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the ActiveX control (may be overwritten with another name).

Control Name of the ActiveX control.

DIL Text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID that
you enter here to the corresponding help topic ID (created by a markup in the .hlp file).

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with the
control.

Style:

OK Button
STYLE attribute value: if the end user presses ENTER, this button is pushed. This attribute is
only available for ActiveX controls that behave like buttons. These ActiveX controls are
marked with the style OLEMISC_ACTSLIKEBUTTON in the system registry.

Cancel Button
STYLE attribute value: if the end user presses ESC, this button is pushed. This attribute is
only available for ActiveX controls that behave like buttons. These ActiveX controls are
marked with the style OLEMISC_ACTSLIKEBUTTON in the system registry.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Rectangle:

The following four attributes decide the ActiveX control’s x and y axis position, its height
and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Copyright © Software AG 2002286

Dialog EditorActiveX Control Attributes Window

Entry in
Attributes
Window

Represents

Properties...

Displays a dialog box for editing the properties provided with the selected ActiveX control.
To enable editing a property, select it from the "Properties" list box.

Only simple properties are displayed in this list box. Other properties (for example
parameterized properties) can be configured using the ActiveX control’s property pages. See
ActiveX Control Property Pages.

The current value of the selected property is displayed in the "Value" field. If the ActiveX
control does not allow reading of the current value, the field is captioned "Value
(write-only)" and the value is not displayed. The "Value" field appears as a text box or a
combo box, depending on the type of property.

There are three ways to edit a property:

1. If "Value" appears as a text box, type in the value and use the "Apply" button to indicate
that you have finished editing.

2. If "Value" appears as a combo box, you must pull down the combo box and select an
entry.

3. If an additional dialog box is provided to select a value for the property, the "Select..."
button is enabled.
Choose the "Select..." button. In the dialog box that appears, select a value. Return to
the "Properties" dialog box. To confirm, choose the "Apply" button.

To reset a property to its initial value, use the "Reset" button.

Note:
The initial value is not displayed as long as the "Properties" dialog box is still open. It is
valid, though, after the dialog box has been closed.

If you can edit the value of the property directly, the default value is displayed in the "Value"
field. To select a value other than the default value, overwrite it.

For help on the selected property, click the "Help" button. (The help file for the ActiveX
control must have been installed).

To confirm the property settings, choose "Close".

About... Dialog box with information on the ActiveX control.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

287Copyright © Software AG 2002

ActiveX Control Attributes WindowDialog Editor

ActiveX Control Property Pages

 Accessible Using

1. if selected: "Control > Property Pages..."; or
2. "Property Pages..." from the context menu.

Property pages are available with most ActiveX controls. They are used to configure the attributes of the
ActiveX control in an individual way. After an ActiveX control in a dialog has been configured using its
property pages, Natural stores the result of the configuration in binary form in the private resource file associated
with the dialog. For more information on resources see the Programming Guide - Object Types - Resource.

Bitmap Control Attributes Window

 Accessible Using

1. Double-click on the bitmap control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the bitmap control (may be overwritten with another name).

Array... "Array" dialog box for defining an array of bitmap controls.

Bitmap
BITMAP-FILE-NAME attribute value. If you pull down the selection box, you can
choose from the existing set of .bmp files.

...
"Source" dialog box for determining sources of BITMAP-FILE-NAME attribute values.
Also provides a list of all available bitmaps to be used.

DIL Text DIL-TEXT attribute value (string).

... "Source" dialog box for determining sources of DIL-TEXT attribute values.

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

State:

Visible VISIBLE attribute value.

Draggable
DRAGGABLE attribute value. If you check this item, the end user may drag the bitmap
control and drop it onto another bitmap control.

Enabled ENABLED attribute value.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the
.hlpfile).

Command ID CLIENT-KEY attribute value (used in this context for associating a command ID).

Copyright © Software AG 2002288

Dialog EditorActiveX Control Property Pages

Entry in
Attributes
Window

Represents

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with
the control.

Background
Color:

Selection box
BACKGROUND-COLOUR-NAME attribute value. If ’default’ is specified,
the color of the first (top-left) pixel in the bitmap determines the background color.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

Rectangle:

The following four attributes decide the bitmap control’s x and y axis position, its height
and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Style:

Vertical
Justification:

Top / Center / Mutually exclusive STYLE attribute values: align to the

Bottom bottom, the vertical center, the top.

Horizontal
Justification:

Left / Center / Mutually exclusive STYLE attribute values: align the bitmap

Right to the left (of the rectangle), the horizontal center, the right.

Framed STYLE attribute value: three-dimensional frame.

Scaled
STYLE attribute value: scale the bitmap to fit into the underlying bitmap control’s
rectangle.

Transparent
STYLE attribute value: bitmap pixels in the background color do not change the state of
the screen.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

289Copyright © Software AG 2002

Bitmap Control Attributes WindowDialog Editor

Canvas Control Attributes Window

 Accessible Using

1. Double-click on the canvas control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Copyright © Software AG 2002290

Dialog EditorCanvas Control Attributes Window

Entry in
Attributes
Window

Represents

Name Handle name of the canvas control (may be overwritten with another name).

Array... "Array" dialog box for defining an array of canvas controls.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

DIL Text DIL-TEXT attribute value (string).

... "Source" dialog box for determining sources of DIL-TEXT attribute values.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp
file).

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with the
control.

Style:

Frame STYLE attribute value: creates a frame around the canvas control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Rectangle:

The following four attributes decide the canvas control’s x and y axis position, its height
and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Foreground
Color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... Dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

291Copyright © Software AG 2002

Canvas Control Attributes WindowDialog Editor

Control Box Control Attributes Window

 Accessible Using

1. Double-click on the control box control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the control box control.

State

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Style:

Framed STYLE attribute value; creates a simple frame around the control box control.

Lowered STYLE attribute value; creates a 3-D border with a sunken appearance.

Exclusive
STYLE attribute value; marks the control box as exclusive. Amongst any set of sibling
controls (i.e., controls with the same parent), only one control box marked as exclusive can
be visible at any one time. This applies both in the Dialog Editor and at run-time.

Transparent
STYLE attribute value; creates a transparent control box. Allows the control box itself to be
invisible without making the child controls it contains invisible.

Size to parent
STYLE attribute value; control boxes with this style are resized to fill the entire client area
of their parent whenever the parent control is resized, or when this style is initially set in the
Dialog Editor.

Rectangle:

The following four attributes decide the control box control’s x and y axis position, its
height and
its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Invokes dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

Copyright © Software AG 2002292

Dialog EditorControl Box Control Attributes Window

Dialog Attributes Window

 Accessible Using

1. Double-click on the dialog background; or
2. "Dialog > Attributes"; or by selecting ’Attributes...’ from the dialog’s context menu or
3. ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in Attributes
Window

Represents

Name Handle name of the dialog window (may be overwritten with another name).

Type
TYPE attribute value. Allows you to decide whether the dialog provides a Multiple
Document Interface (MDI frame or MDI child) or not (standard).

String STRING attribute value (title of the "Dialog" window).

...
"Source" dialog box for determining sources of STRING attribute values. For more
information on the "Source" dialog box, see Source.

Font
Value of the FONT-STRING attribute. Decides the font for all dialog elements in this
dialog except for the system-supplied window decorations and the dialog elements for
which a font has been chosen explicitly.

...
"Font" dialog box for determining sources of STRING attribute values. For more
information on the "Font" dialog box, see Source.

Context Menu
CONTEXT-MENU attribute value.
Specifies the context menu (if any) associated with the dialog itself.

Icon
BITMAP-FILE-NAME attribute value. Also provides a list of all available icons to be
used.

Help file
HELP-FILE-NAME attribute value. Decides a dialog’s help file name (without
extension).

Default button
DEFAULT-BUTTON attribute value: type in or select the handle name of the
push-button
control for which you want to assign this attribute.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that
you enter here to the corresponding help topic ID (created by a markup in the .hlp file).

Docking
DOCKING attribue value. Determines the sides of the dialog (if any) on which tool bars
are allowed to dock.

Background Color:

Selection box BACKGROUND-COLOUR-NAME attribute value. Choose a predefined color.

... "Custom" dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

Style:

Modeless (Popup)
/Modal /Dialog box

Mutually exclusive values for the STYLE attribute.

293Copyright © Software AG 2002

Dialog Attributes WindowDialog Editor

Entry in Attributes
Window

Represents

Centered position
STYLE attribute value.
Dialog will be centered on screen.

Default position

STYLE attribute value. If set, the initial position (but not size) of the dialog is
determined by the windowing system.
The setting will be ignored if "Dialog box" is set. This option is especially useful for
MDI child dialogs.

Default rectangle
Value of the STYLE attribute. If set, the initial position and size of the dialog are
decided by the
windowing system. The setting will be ignored if "Dialog box" is set.

Control clipping
Value of the STYLE attribute. If set, dialog elements are not allowed to overpaint other
dialog elements with the same parent which occur later in the control sequence.

3-D client window
STYLE attribute value. If set, the dialog interior is drawn with a sunken 3-D
appearance.

State:

Visible VISIBLE attribute value. If you check this entry, the dialog is visible.

Enabled
ENABLED attribute value. If you check this entry, the end user may interact with the
dialog.

Maximized
MAXIMIZED attribute value. If you check this entry, the dialog is maximized to fill the
entire screen.

Minimized

MINIMIZED attribute value. If you check this entry, the dialog is minimized to icon
size.
The end user then will have to double-click on the icon to restore the dialog to its
default size.

Save layout

If checked, the tool and status bar control layout will be automatically saved and
restored
on a per-user basis between sessions at run-time. This option is only available if the
dialog contains at least one tool bar or status bar control.

Popup help
POPUP-HELP attribute value. Help for this dialog or any of its controls will be
displayed in a popup window.

Auto-adjust
AUTOADJUST attribute value. If you check this entry, the dialog will be scaled at run
time according to the current system font size (i.e. "large fonts"/"small fonts" setting).

Event queueing
EVENT-QUEUEING attribute value. If you check this entry, messages for this dialog
are queued instead of being processed immediately.

Background color:

Selection box BACKGROUND-COLOUR-NAME attribute value. Choose a predefined color.

... "Custom" dialog box for editing

 BACKGROUND-COLOUR-VALUE attribute value.

Components:

Menu bar
MENU-HANDLE attribute value: if checked, the dialog editor will assign the handle
value specified in the menu bar attributes window.

Toolbar
HAS-TOOLBAR attribute value: if checked, the dialog editor will assign the handle
value specified in the toolbar attributes window and set HAS-TOOLBAR to TRUE.

Copyright © Software AG 2002294

Dialog EditorDialog Attributes Window

Entry in Attributes
Window

Represents

Status bar HAS-STATUS-BAR attribute value. If you check this entry, the dialog has a status bar.

Dynamic info line
HAS-DIL attribute value. If you check this entry, the dialog has a dynamic information
line.

System button
HAS-SYSTEM-BUTTON attribute value. If you check this entry, the dialog has a
system button.

Size modifiable
SIZE-MODIFIABLE attribute value. If you check this entry, the dialog’s size may be
modified.

Maximizable
MAXIMIZABLE attributes value. If you check this entry, the dialog may be
maximized.

Minimizable MINIMIZABLE attribute value. If you check this entry, the dialog may be minimized.

Horizontal scroll
bar

HORIZ-SCROLLABLE attribute value. If you check this entry, the dialog has a
horizontal scroll bar.

Vertical scroll bar
VERT-SCROLLABLE attribute value. If you check this entry, the dialog has a vertical
scroll bar.

Help button

HAS-HELP-BUTTON attribute value. If you check this entry, the dialog title bar
contains a help button.
Note: Windows does not display the help button if minimize and maximize buttons are
present.

Rectangle:

The following four attributes decide the dialog’s x and y axis position, its height and its
width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Subroutines Dialog box for editing subroutines.

Help Provides online help on the attributes window.

295Copyright © Software AG 2002

Dialog Attributes WindowDialog Editor

Dialog Context Menus Window

 Accessible Using

1. "Dialog > Context Menus"; or
2. CTRL+ALT+X.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Available Context
Menus

Shows the context menus currently defined for this dialog. One or more context menus
can be selected from this list.

New
Creates a new, empty, context menu with a default name. The new context menu is
inserted into the list immediately after the selected context menu(s).

Cut Cuts the selected context menu(s) to the clipboard.

Paste
Pastes context menu(s) from the clipboard, which are inserted into the list immediately
after the selected context menu(s).

Selected Context
Menu

Shows information relating to the currently selected context menu. If multiple context
menus are selected, this section is disabled.

Name
Displays the name of the currently selected context menu, which can be modified here or
in the Menu Editor Window itself.

Enabled
The initial ENABLED attribute state for the context menu. A disabled context menu is
suppressed at run-time.

Edit
Invokes the menu editor for the selected context menu, where the menu items themselves
can be defined.

Events
Invokes the event handler window for editing the events for the context menu itself. (The
events for the menu items and any submenus are accessed using the Menu Editor
Window).

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

Copyright © Software AG 2002296

Dialog EditorDialog Context Menus Window

Edit Area Control Attributes Window

 Accessible Using

1. Double-click on the edit area control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the edit area control (may be overwritten with another name).

Array... "Array" dialog box for defining an array of edit area controls.

String STRING attribute value.

... "Source" dialog box for determining sources of STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

DIL Text DIL-TEXT attribute value (string).

... "Source" dialog box for determining sources of DIL-TEXT attribute values.

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with
the control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Modifiable MODIFIABLE attribute value. If this entry is checked, the end user may edit the text.

Horizontal scroll
bar

HORIZ-SCROLLABLE attribute value.

Vertical scroll bar VERT-SCROLLABLE attribute value.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp
file).

Length

LENGTH attribute value. Specifies the maximum number of characters which can be
entered into the edit area control.
Note:
Each line break consumes two characters (carriage return / line feed). This applies
regardless of whether the line break was explicitly entered by the user or implicitly
inserted due to word wrapping.

Style:

Framed STYLE attribute value: creates a frame around the edit area control.

297Copyright © Software AG 2002

Edit Area Control Attributes WindowDialog Editor

Entry in
Attributes
Window

Represents

Wordwrapped

STYLE attribute value: when text exceeds the width of the edit area control, it is
automatically wrapped to the next line.
Note:
When you set the STYLE attribute value to "WORDWRAP", you cannot set the
HORIZ-SCROLLABLE attribute value to "TRUE" and vice versa.

Autoscroll

STYLE attribute value: Text is vertically scrollable and is automatically scrolled upwards
when the ENTER key is pressed on the last displayed line.
Note:
This option only has an effect if the edit area control does not have a vertical scroll bar.
Otherwise, the text is implicitly autoscrollable.

Rectangle:

The following four attributes decide the edit area control’s x and y axis position, its
height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Foreground color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... Dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

Copyright © Software AG 2002298

Dialog EditorEdit Area Control Attributes Window

Group Frame Control Attributes Window

 Accessible Using

1. Double-click on the group frame control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in Attributes
Window

Represents

Name Handle name of the group frame control (may be overwritten with another name).

Array... Dialog box for defining an array of group frame controls.

String STRING attribute value.

... "Source" dialog box for determining sources of STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

Style:

Container
STYLE attribute value. If checked, all existing controls within the group frame, and any
controls created within it, become children of the group frame.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Foreground color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... "Custom" dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... "Custom" dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

Rectangle:

The following four attributes decide the group frame control’s x and y axis position, its
height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

299Copyright © Software AG 2002

Group Frame Control Attributes WindowDialog Editor

Input Field Control Attributes Window

 Accessible Using

1. Double-click on the input field control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu.
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the input field control (may be overwritten with another name).

Array... Dialog box for defining an array of input field controls.

String STRING attribute value.

... "Source" dialog box for determining sources of STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with the
control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Modifiable MODIFIABLE attribute value. If this entry is checked, the end user may edit the text.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp
file).

Edit mask EDIT-MASK attribute value (only enabled if STRING source is a linked variable).

Length LENGTH attribute value.

Left / Center /
Right

Mutually exclusive STYLE attribute values: align input to the left, the center, the right.
Note:
When you create an input field control, and you assign it a STYLE value of "Center" or
"Right", the input field control must be higher than the font. Otherwise, the STRING will
not be displayed.

Mandatory STYLE attribute value: input is mandatory.

Upper case STYLE attribute value: input will be converted to UPPERCASE letters.

Nondisplay
STYLE attribute value: input is displayed as a series of asterisks (for example, for
passwords).

Copyright © Software AG 2002300

Dialog EditorInput Field Control Attributes Window

Entry in
Attributes
Window

Represents

Foreground
color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... Dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

Rectangle:

The following four attributes decide the input field control’s x and y axis position, its
height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

301Copyright © Software AG 2002

Input Field Control Attributes WindowDialog Editor

List Box Control Attributes Window

 Accessible Using

1. Double-click on the list box control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the list box control (may be overwritten with another name).

Items
Input field where you can specify the number of list box items in the list box control.
When you enter a number here, the dialog editor generates the corresponding list box
items and the "Source" dialog box becomes enabled.

... Dialog box for determining sources of the list box items’ STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Accelerator ACCELERATOR attribute value.

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with the
control.

... Dialog box for determining sources of ACCELERATOR attribute values.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp
file).

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Multiple selection
MULTI-SELECTION attribute value. If you check this entry, the end user may select
several list box items at a time.

Sorted
SORTED attribute value. If you check this entry, the items are sorted and you cannot
modify them.

Autoselect
AUTOSELECT attribute value. If you check this entry, Natural automatically updates the
selection in response to a right mouse button click before displaying a context menu.

Style:

3-D Border STYLE attribute value: list box has sunken appearance.

Integral height STYLE attribute value: partial rows are not displayed.

Copyright © Software AG 2002302

Dialog EditorList Box Control Attributes Window

Entry in
Attributes
Window

Represents

Rectangle:

The following four attributes decide the list box control’s x and y axis position, its height
and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Foreground
color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... "Custom" dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... "Custom" dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

303Copyright © Software AG 2002

List Box Control Attributes WindowDialog Editor

Menu Editor Window

 Accessible Using

1. First check the "Menu Bar" field in the "Dialog Attributes" window, then double-click on the dummy menu
bar in the dialog; or

2. "Dialog > Menu Bar" or by selecting ’Menu Bar...’ from the menu bar’s context menu or
3. CTRL+ALT+M.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Menu:

Name Handle name of the menu (may be overwritten with another name).

Submenus

Lists the menu’s handle name and all of the menu items of MENU-ITEM-TYPE "Submenu"
defined so far.
This list is indented, that is, the menu structure becomes visible. If you select an entry, its
children menu items
or submenu controls appear in the "Selected Submenu" group frame.

Selected
submenu:

Displays the STRING attribute values of the menu items or submenu controls which have
been created as child
of the "Submenus". You can edit the attributes of the currently "Selected Submenu" in the
"Selected Menu Item" group frame.
The entries marked ">" are submenus. (You can also select several menu items for cutting
and pasting.)

Cool menu
Enables the display of bitmaps within a menu. If not checked, no menu bitmaps will be
displayed,
even if the menu items themselves have a bitmap assigned to them.

Image width

The width of images to be displayed alongside the menu items. Menu item bitmaps with a
different width will be scaled,
or truncated or extended (in the background color) to fit, depending on the value of the menu
item’s ’scaled’ attribute.

Image height

The height of images to be displayed alongside the menu items. Menu item bitmaps with a
different height will be scaled,
or truncated or extended (in the background color) to fit, depending on the value of the menu
item’s ’scaled’ attribute.
The specified image height may determine the menu item height if larger than the standard
menu item height will allow.

Menu items:

Displays the STRING attribute values of the menu items or submenu controls which have
been created as child
of the "Submenus". You can edit the attributes of the currently "Selected Submenu" in the
"Selected Menu Item" group frame.
The entries marked ">" are submenus. (You can also select several menu items for cutting
and pasting.)

Copyright © Software AG 2002304

Dialog EditorMenu Editor Window

Entry in
Attributes
Window

Represents

<< Parent
menu
Submenu >>

When you are creating a menu hierarchy, these two push buttons enable you to navigate to
the next higher level (<< Parent Menu) or the next lower level (Submenu >>) of the existing
branches.

Selected menu
item:

Displays the attribute values of the selected submenu for editing. For editing, it is necessary
that one menu item be selected.

Name
Handle name of the menu item or submenu control (may be overwritten with another name
starting with the # sign).

Type
MENU-ITEM-TYPE attribute value for the selected menu item. If the type is "Submenu" or
"Window submenu", this item is automatically changed into a submenu control.

Same as

SAME-AS attribute value (only available for MENU-ITEM-TYPE "Normal"); the selection
box displays the signals available.
If this field is filled, the fields for the attributes which are inherited from the referenced
signal are disabled, and can only be
re-enabled if the link is broken again by deleting the "Same as" field contents.

OLE

MENU-ITEM-OLE attribute value. If a dialog has a menu bar and an OLE container control
is being edited in-place, this attribute decides whether a top-level menu item or a submenu
control is not an OLE menu item, or whether it is an item that represents the OLE Container
or File or Window group.

String STRING attribute value.

... Dialog box for determining sources of STRING attribute values.

Bitmap BITMAP-FILE-NAME attribute value.

...
Dialog box for determining sources of BITMAP-FILE-NAME attribute values. Also
provides a list of all available bitmaps to be used.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

Command ID CLIENT-KEY attribute value (used in this context for associating a command ID).

Background
Color:

Selection box

BACKGROUND-COLOUR-NAME attribute value to be used for display of the menu
item’s bitmap (if any).
If ’default’ is specified, the color of the first (top-left) pixel in the bitmap determines the
background color.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

State:

Enabled ENABLED attribute value.

Shared
SHARED attribute value. CLICK events for this menu item will be forwarded to the active
MDI child dialog (if any).
This attribute is ignored for non-MDI dialogs.

Checked CHECKED attribute value (not applicable to submenu controls).

305Copyright © Software AG 2002

Menu Editor WindowDialog Editor

Entry in
Attributes
Window

Represents

Style:

Scaled
STYLE attribute value: scale the menu item’s bitmap to fit the image height and width
specified for the submenu.

Transparent
STYLE attribute value: menu item bitmap pixels in the background color do not change the
state of the screen.

Events Dialog box for editing event handlers; may only be used with the appropriate "Type" field.

New
Creates a new submenu control or menu item. If you change the type in the "Type" field of
the "Selected Menu Item" group frame, it creates a menu item with a corresponding
MENU-ITEM-TYPE attribute value. Within a submenu, it creates a menu item.

Cut Cuts the selected menu item(s) and copies it (them) to the clipboard.

Copy Copies the selected menu item(s) to the clipboard.

Paste

Pastes menu item(s) from the clipboard.

Note:
The "New" and "Paste" entries insert menu items behind the currently selected item, or, if no
items are selected, at the top of the list. You deselect items by holding down CTRL while
clicking on the selected items.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

Copyright © Software AG 2002306

Dialog EditorMenu Editor Window

OLE Container Control Attributes Window

 Accessible Using

1. Double-click on the OLE container control; or
2. if selected: "Control > Attributes"; or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the OLE container control (may be overwritten with another name).

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp file).

Object
Information:

 In this group box, you decide the OLE object’s type whose name is then displayed.

Type

Decides whether the OLE container control contains an OLE server, a new OLE object, an
existing OLE object, or none of all. For more information on these three types, see
Selecting an OLE Server or Document.

Note:
This is not a value of the TYPE attribute.

...

Dialog box for selecting a particular OLEserver, a new OLE object, or an existing Natural
embedded OLE object.

EMBEDDED-OBJECT, SERVER-OBJECT and SERVER-PROGID attribute values.

Name Displays the name of the selected item. You cannot edit this entry.

Framed STYLE attribute value: draw a frame around the OLE container control.

Zoom (%)
ZOOM-FACTOR attribute value: magnify or reduce the default representation of an OLE
server application that has become visible in an OLE container control.

Status:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Modifiable
MODIFIABLE attribute value. If this entry is checked, the end user may modify the OLE
object in-place.

307Copyright © Software AG 2002

OLE Container Control Attributes WindowDialog Editor

Entry in
Attributes
Window

Represents

Rectangle:

The following four attributes decide the OLE container control’s x and y axis position, its
height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

OK & Start
Server

Save settings, start the OLE server and exit the window.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

Selecting an OLE Server or Document

If you select an OLE server or document, the three options "OLE server", "OLE object" and "Existing OLE
object" imply a number of restrictions when using Natural and when using the server application.

Differences Between OLE Server, New OLE Object and Existing OLE Object

Before you select an entry, decide if this is what you need.

Type Characteristics

OLE Server
Creates an OLE object in its native form. Either server with no content ("Create New") or
server with existing file as content ("Create from File").

New OLE
Object

Creates a new OLE embedded object to be stored within the Natural environment (default file
extension ".neo"). Only "Create New" allowed.

Existing OLE
Object

Creates an existing OLE embedded object that has been stored within the Natural
environment (default file extension ".neo"). Only "Create from File" allowed.

Copyright © Software AG 2002308

Dialog EditorSelecting an OLE Server or Document

OLE Server

If you have selected the "OLE server" entry

1. Select the "..." button to the right of the drop-down combo box.
The "Select OLE Server or Document" dialog box appears. Here you have two options:

The "Create New" radio button enables you to select a server application to be started when the end
user activates the OLE container control at runtime. The server application is started as such, with no
file loaded into it.
The "Create from File" radio button enables you to insert the contents of a file as an OLE object. You
can browse for the file. When the end user activates the OLE container control at runtime, the
application used to create the file is started as a server application, with the content being the selected
file.

2. Either select "Create New".
Or select "Create from File".
If you have selected "Create New", proceed with 3a.
If you have selected "Create from File", proceed with 3b.

3. 3a. - From the "Object Type" list box, select an application, for example "Microsoft Word 6.0 Document".
3b. - In the file text box, enter the path of the file you want to select.
Or, if you are not sure where the file is, choose the "Browse" button to search in your environment.

4. Select the "Display as Icon" check box or not. This lets you decide whether you want to display your
application or file as an application icon inside the OLE container control or whether you want your
application or file to appear as a text string called <<applicationname>> or <<pathname>>. Both act as a
placeholder for the server application.
If you choose to display the application or file as an icon, you can customize the icon by selecting the
"Change Icon..." button.

5. To save your settings and quit the dialog box, select OK.
Or select "Cancel" to quit without saving.

 To edit an OLE object inside an OLE container control at runtime

Prerequisite: you have selected "OLE server".

1. Click and hold down the right mouse button inside the OLE container control’s rectangle.
The pop-up menu specific to your server application appears, saying for example:
Edit object-typeObject; or
object-type Object with the submenus "Edit" and "Open".
"Open" activates the server application in a separate window and enables you to edit and save the object.
You can then quit the server application and return to Natural. "Edit" lets you activate the server application
inside your Natural dialog.

2. Make your selection in the pop-up menu.
3. Edit (and save) your object using the menu entries provided by the OLE server application.

 To quit the OLE server application at runtime

If you have chosen "Edit":

Click outside the OLE container control’s rectangle.
The OLE server application is deactivated in the Natural dialog, but the object is still displayed inside the
OLE container control.

If you have chosen "Open":

From the OLE server application’s menu, select "File", then "Close and Return to
container-application-name".
The object is unloaded from the OLE server application in the separate window, but the object is still

309Copyright © Software AG 2002

Selecting an OLE Server or DocumentDialog Editor

displayed inside the OLE container control.

 New OLE Object

If you have selected the "New OLE object" entry, do the following:

1. Select the "..." button to the right of the drop-down combo box.
The "Select OLE Server or Document" dialog box appears. Important: Here you may only select "Create
New", even though the other option is not disabled.

2. Select "Create New".
3. From the "Object Type" list box, select an application, for example "Microsoft Word 6.0 Document".
4. Select the "Display as Icon" check box or not. This lets you decide whether you want to display your object

as an application icon inside the OLE container control or whether you want your object to appear as a text
string called <<applicationname>>.
If you choose to display the application or file as an icon, you can customize the icon by selecting the
"Change Icon..." button.

5. To save your settings and quit the dialog box, select OK.
Or select "Cancel" to quit without saving.
You have returned to the attributes window. Note that your server’s name now appears in the "Name" text
box, prepended by an "@". This is the current value of the "SERVER-PROGID" attribute. The OK button is
disabled. Instead, the "OK & Start Server" button is enabled.

6. Ensure you have made all choices in the attributes window.
7. Choose "OK & Start Server".

Your attributes window settings are saved and the server application is started.
8. Create your OLE object.
9. Quit the server application. The server application usually provides the menu entries "File", then "Close and

Return to container-application-name".
A file list box called "Save As" appears.

10. Save the file as a Natural embedded object with the default file extension ".neo".

 If your end user has edited your new OLE object at runtime

1. To edit it in-place, the server application provides additional entries to the Natural application’s menu bar.
2. To quit the server application, the server application usually provides the menu entries "File", then "Close

and Return to container-application-name".
Note:
Depending on the server application, you might have to set the focus back to Natural as the server
applications usually remain active.
A file list box called "Save As" appears.

3. The end user must save the file as a Natural embedded object with the default file extension ".neo".

 Existing OLE Object

If you have selected the "Existing OLE object" entry:

1. Select the "..." button to the right of the drop-down combo box.
The "Select existing Natural Embedded Object" dialog box appears. It displays all Natural embedded
objects with the default file extension ".neo" in the default directory.

2. Select a file.
Both the OK and the "OK & Start Server" buttons are enabled. You now have two options:

If you quit the attributes window by selecting OK, the embedded object will be shown in the container,
but cannot be modified (read-only).
If you quit the attributes window by selecting "OK & Start Server", the corresponding server
application is started and the chosen object can be modified (read-write).

3. Choose "OK & Start Server".

Copyright © Software AG 2002310

Dialog EditorSelecting an OLE Server or Document

Or choose OK.
Your attributes window settings are saved and the server application is started.

4. Modify your OLE object (if you have chosen "OK & Start Server" and the object is read-write).
Or look at your OLE object (if you have chosen OK and the object is read-only).

5. Quit the server application. The server application usually provides the menu entries "File", then "Close and
Return to container-application-name".
A file list box called "Save As" appears.

6. If you confirm the default, the file is automatically saved as a Natural embedded object with the default file
extension ".neo".

311Copyright © Software AG 2002

Selecting an OLE Server or DocumentDialog Editor

Push Button Control Attributes Window

 Accessible Using

1. Double-click on the push-button control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Copyright © Software AG 2002312

Dialog EditorPush Button Control Attributes Window

Entry in
Attributes
Window

Represents

Name Handle name of the push-button control (may be overwritten with another name).

Array... Dialog box for defining an array of push-button controls.

String STRING attribute value.

... Dialog box for determining sources of STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with
the control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp
file).

Style:

OK Button STYLE attribute value: if the end user presses ENTER, this button is pushed.

Cancel Button STYLE attribute value: if the end user presses ESC, this button is pushed.

Command ID CLIENT-KEY attribute value (used in this context for associating a command ID).

Rectangle:

The following four attributes decide the push button control’s x and y axis position, its
height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

313Copyright © Software AG 2002

Push Button Control Attributes WindowDialog Editor

Radio Button Control Attributes Window

 Accessible Using

1. Double-click on the radio-button control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected:ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the radio-button control (may be overwritten with another name).

Array... Dialog box for defining an array of radio-button controls.

String STRING attribute value.

... Dialog box for determining sources of STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with the
control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Checked CHECKED attribute value.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp
file).

Group ID
GROUP-ID attribute value (means this radio-button control belongs to the group of radio
buttons with this ID).

Rectangle:

The following four attributes decide the radio-button control’s x and y axis position, its
height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Foreground
color:

Copyright © Software AG 2002314

Dialog EditorRadio Button Control Attributes Window

Entry in
Attributes
Window

Represents

Selection box FOREGROUND-COLOUR-NAME attribute value.

... Dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

315Copyright © Software AG 2002

Radio Button Control Attributes WindowDialog Editor

Scrollbar Control Attributes Window

 Accessible Using

1. Double-click on the scroll-bar control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected:ENTER

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name
Handle name of the scroll-bar control (may be overwritten with another name starting with
the # sign).

Array... Dialog box for defining an array of scroll-bar controls.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID that
you enter here to the corresponding help topic ID (created by a markup in the .hlp file).

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with the
control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Values:

Minimum MIN attribute value (minimum numerical value on the scale).

Maximum MAX attribute value (maximum numerical value on the scale).

Line
LINE attribute value (number of logical units by which the slider moves if the end user
presses the up and down arrow buttons).

Page
PAGE attribute value (number of logical units by which the slider moves if the end user
clicks on the scroll-bar control’s shaft).

Slider SLIDER attribute value (position of the slider in between the MIN and MAX values).

Rectangle:

The following four attributes decide the scroll-bar control’s x and y axis position, its height
and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Copyright © Software AG 2002316

Dialog EditorScrollbar Control Attributes Window

Entry in
Attributes
Window

Represents

Horizontal /
Vertical

Mutually exclusive STYLE attribute values: slider will scroll horizontally or vertically.
Note:
When you edit the STYLE attribute value in the scroll-bar control attributes window, setting
"h" instead of "v" and vice versa, the RECTANGLE-H and RECTANGLE-W attribute values
are exchanged. The dialog editor thus ensures that the scroll-bar control will not provide for
vertical scrolling in a horizontal shape and vice versa.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

317Copyright © Software AG 2002

Scrollbar Control Attributes WindowDialog Editor

Selection Box Control Attributes Window

 Accessible Using

1. Double-click on the selection box control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the selection box control (may be overwritten with another name).

String STRING attribute value.

... Dialog box for determining sources of STRING attribute values.

Items

Input field where you can specify the number of selection box items in the selection box
control.
When you enter a number here, the dialog editor generates the corresponding selection
box items and the corresponding "Source" dialog box becomes enabled.

... Dialog box for determining sources of the selection box items’ STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with the
control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Modifiable MODIFIABLE attribute value.

Sorted
SORTED attribute value. If you check this entry, the items are sorted and you cannot
modify them.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp
file).

Edit mask EDIT-MASK attribute value.

Length LENGTH attribute value.

Copyright © Software AG 2002318

Dialog EditorSelection Box Control Attributes Window

Entry in
Attributes
Window

Represents

Rectangle:

The following four attributes decide the selection box control’s x and y axis position,
its height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Foreground
color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... Dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

Mandatory STYLE attribute value: input in the selection box control’s input field is mandatory.

Box dropped
down

STYLE attribute value: the box stays dropped down all the time.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

319Copyright © Software AG 2002

Selection Box Control Attributes WindowDialog Editor

Signal Attributes Window

 Accessible Using

1. "Dialog> Signals"; or
2. CTRL+ALT+N.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in Attributes
Window

Represents

Signals:

Displays the handle name of the signals already created. If you click on a signal in
the list,
its attributes are displayed for editing. You can also select several signals for cutting
and pasting.

New Creates a new signal.

Cut
Cuts the selected signal and copies it to the clipboard. You can also cut and paste
several signals at once.

Copy Copies the selected signal(s) to the clipboard.

Paste

Pastes a signal from the clipboard.
Note:
The "New" and "Paste" entries insert signals behind the currently selected signal, or,
if no signals are selected,
at the top of the list. You deselect items by holding down CTRL while clicking on the
selected items.

Selected signal:
In this group frame, you assign attribute values to the signals selected in the "Signals"
list box on the left.

Name Handle name of the signal (may be overwritten with another name).

Type MENU-ITEM-TYPE attribute value for the selected signal.

Bitmap BITMAP-FILE-NAME attribute value.

...
Dialog box for determining sources of BITMAP-FILE-NAME attribute values.
Also provides a list of all available bitmaps to be used.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

Tooltip TOOLTIP attribute value.

... Dialog box for determining sources of TOOLTIP attribute values.

Command ID CLIENT-KEY attribute value (used in this context for associating a command ID).

Background Color:

Copyright © Software AG 2002320

Dialog EditorSignal Attributes Window

Entry in Attributes
Window

Represents

Selection box

BACKGROUND-COLOUR-NAME attribute value to be used for display of the
signal’s bitmap (if any).
If ’default’ is specified, the color of the first (top-left) pixel in the bitmap determines
the background color.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Checked CHECKED attribute value.

Shared
SHARED attribute value. If checked, CLICK events for this signal will be forwarded
to the active MDI child dialog (if any). This attribute is ignored for non-MDI dialogs.

Events
Dialog box for editing event handlers; may only be used with the appropriate "Type"
entry.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

321Copyright © Software AG 2002

Signal Attributes WindowDialog Editor

Status Bar Control Attributes Window

 Accessible Using

1. Double-click on the status bar control; or
2. if selected: "Control>Attributes " or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the status bar control (may be overwritten with another name)

Attributes...

Subordinate window for editing the status bar control’s attribute values. For more
information, see Status Bar Control Attributes Subwindow. (Normally, all attributes of a
dialog element can be edited in the attributes window. Instead, the attributes of each pane in
the status bar control can be edited here. For reasons of space, the status bar control’s
attributes are edited in a separate subwindow).

Status-bar
panes:

Displays the handle name of the panes already created. If you click on a pane in this list,
its attributes are displayed for editing. You can also select several panes for cutting and
pasting.

New Creates a new pane.

Cut
Cuts the selected pane and copies it to the clipboard. You can also cut and paste several panes
at once.

Paste

Pastes a pane from the clipboard.
Note:
The "New" and "Paste" entries insert panes behind the currently selected item, or, if no items
are selected,
at the top of the list. You deselect items by holding down CTRL while clicking on the
selected items.

Selected status
bar pane:

In this group frame, you assign attribute values to the panes selected in the "Status bar panes"
list box on the left.

Name Handle name of the pane (may be overwritten with another name).

Width

ITEM-W attribute value. Specifies the width of the pane in pixels.
Note:
If 0, the pane does not have a fixed width, but is instead automatically sized to fill the space
available ("stretchy pane").

String STRING attribute value. Specifies the initial pane text.

... Dialog box for determining sources of STRING attribute values.

Copyright © Software AG 2002322

Dialog EditorStatus Bar Control Attributes Window

Entry in
Attributes
Window

Represents

Icon

BITMAP-FILE-NAME attribute value. Species the icon (if any) to be displayed alongside the
pane text.
Note: Natural attempts to extract the small (16x16 pixel) icon (if any) from the specified icon
file.
If only a large (32x32 pixel) icon is present, Windows will automatically synthesize a small
icon from it,
which may lead to undesirable scaling effects.

...
Dialog box for determining sources of BITMAP-FILE-NAME attribute values.
Also provides a list of all available icons to be used.

Tooltip TOOLTIP attribute value.

... Dialog box for determining sources of TOOLTIP attribute values.

Command ID CLIENT-KEY attribute value (used in this context for associating a command ID).

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Shared
SHARED attribute value. If checked, CLICK events for this pane will be forwarded
to the active MDI child dialog (if any). This attribute is ignored for non-MDI dialogs.

Style:

Centered STYLE attribute value. If set, text will be horizontally centered within the pane.

Hide disabled
STYLE attribute value. If set, the pane text and icon (if any) will be hidden
(instead of being grayed out) when the pane is disabled.

Raised STYLE attribute value. If set, the pane appears to "pop out".

No borders
STYLE attribute value. If set, the pane borders are not drawn.
This style is typically applied to stretchy panes.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

323Copyright © Software AG 2002

Status Bar Control Attributes WindowDialog Editor

Status Bar Control Attributes Subwindow

 Accessible Using

1. Click on the "Attributes..." button in the status bar control attributes window

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Copyright © Software AG 2002324

Dialog EditorStatus Bar Control Attributes Subwindow

Entry in Attrib.
Subwindow

Represents

Control ID CLIENT-KEY attribute value (used in this context for associating a user-defined ID).

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated
with the control.

Location
LOCATION attribute value. Determines the side of the dialog on which the status bar
control is initially positioned.

Internal Metrics:

Minimum height

ITEM-H attribute value. Specifies the minimum height of the status bar panes (in
pixels).
This is particularly useful for status bar controls which display icons. By default, the
minimum
height of a status bar control depends on the font used to draw the text.

Margin-X
MARGIN-X attribute value. Specifies the margin (in pixels) to the left and right of
the status bar panes.

Margin-Y
MARGIN-Y attribute value. Specifies the margin (in pixels) above and below the
status bar panes.

Borders:

Top
STYLE attribute value. Species whether a border should be displayed at the top of
the control.

Bottom
STYLE attribute value. Species whether a border should be displayed at the bottom
of the control.

3-D
STYLE attribute value. If set, the status bar control borders (if any) are drawn with a
3-D appearance.

Style:

Gripper
STYLE attribute value. Determines whether a sizing gripper is displayed within the
status bar control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Tooltips
HAS-TOOLTIP attribute value. If not set, display of the tool tip text (if any)
for the status bar panes will be suppressed.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

325Copyright © Software AG 2002

Status Bar Control Attributes SubwindowDialog Editor

Table Attributes Window

 Accessible Using

1. Double-click on the table; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Table:

Name Handle name of the table (may be overwritten with another name)

Attributes...

Subordinate window for editing the table’s attribute values. For more information, see Table
Attributes Subwindow. (Normally, all attributes of a dialog element can be edited in the
attributes window. Instead, the attributes of each column specification control in the table
can be edited here. For reasons of space, the table’s attributes are edited in a separate
subwindow).

Columns:

Displays the handle name, the COLUMN-TYPE and the STRING attribute values of the
column specification controls already created. If you click on a column specification
control, its attributes are displayed for editing. You can also select several column
specifications for cutting and pasting.

Selected
Column

Specification:

In this group frame, you assign attribute values to the column specification controls selected
in the "Columns" list box on the left.

Name Handle name of the column specification control (may be overwritten with another name).

Type
COLUMN-TYPE attribute value for the selected column specification control. If the type is
"Selection Box", the "Items" entry is enabled and enables you to define the number of
selection box items and the source of their values.

String STRING attribute value.

... Dialog box for determining sources of STRING attribute values.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Items
If the "Type" entry is set to "Selection Box", this entry is enabled and allows you to enter
the number of selection box items.

... Dialog box for determining sources of selection box item values.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID that
you enter here to the corresponding help topic ID (created by a markup in the .hlp file).

Width RECTANGLE-W attribute value.

Length LENGTH attribute value.

Copyright © Software AG 2002326

Dialog EditorTable Attributes Window

Entry in
Attributes
Window

Represents

State:

Modifiable MODIFIABLE attribute value.

New

Creates a new column specification control.
If you change the type in the "Type" field of the "Selected Column Specification" group
frame, it creates a column specification control with a corresponding COLUMN-TYPE
attribute value.

Cut Cuts the selected column specification control(s) and copies it (them) to the clipboard.

Paste

Pastes the selected column specification control(s) from the clipboard.
Note:
The "New" and "Paste" entries insert column specification controls behind the currently
selected control, or, if no controls are selected, at the top of the list. You deselect controls
by holding down CTRL while clicking on the selected controls.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

327Copyright © Software AG 2002

Table Attributes WindowDialog Editor

Table Attributes Subwindow

 Accessible Using

Click on the "Attributes..." button in the table attributes window.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in Attrib.
Subwindow

Represents

Name Handle name of the table (may be overwritten with another name).

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

Header font Output field where the font currently selected for the table header is displayed.

... Dialog box for selecting fonts.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with the
control.

Rectangle:

The following four attributes decide the table’s x and y axis position, its height and its
width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Row count ROW-COUNT attribute value.

Row height ROW-HEIGHT attribute value.

Header height HEADER-HEIGHT attribute value.

Width 1st col. FIRST-COLUMN-WIDTH attribute value.

Frozen cols. FROZEN-COLUMNS attribute value.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter here to the corresponding help topic ID (created by a markup in the .hlp
file).

First visible col. FIRST-VISIBLE-COLUMN attribute value.

First visible row FIRST-VISIBLE-ROW attribute value.

Columns header STYLE attribute value: buttons with field names are displayed at the top of each column.

Extendable STYLE attribute value: end users can delete and insert rows using DEL and INS.

No lines
STYLE attribute value: the table control is displayed without the lines that normally
separate the cells.

Resize columns STYLE attribute value: end users may resize the columns horizontally.

Copyright © Software AG 2002328

Dialog EditorTable Attributes Subwindow

Single cell
selection

STYLE attribute value: if set, end users may only select single cells. If not set, end users
may select ranges of cells.

Resize rows STYLE attribute value: end users may resize the rows vertically.

Whole row
selection

STYLE attribute value: selecting an individual cell sets the selection to the entire row.

Draggable
columns

STYLE attribute value: if set, end users may drag the columns.

Integral height STYLE attribute value: partial rows are not displayed.

Foreground
color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... Dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Modifiable MODIFIABLE attribute value.

Has first column HAS-FIRST-COLUMN attribute value.

Horizontal scroll
bar

HORIZ-SCROLLABLE attribute value.

Vertical scroll bar VERT-SCROLLABLE attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

329Copyright © Software AG 2002

Table Attributes SubwindowDialog Editor

Text Constant Control Attributes Window

 Accessible Using

1. Double-click on the text constant control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in Attributes
Window

Represents

Name Handle name of the text constant control (may be overwritten with another name).

Array... Dialog box for defining an array of text constant controls.

String STRING attribute value.

... Dialog box for determining sources of STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

Style:

Left / Centered /
Right

Mutually exclusive STYLE attribute values: align output to the left, the center, the
right.

Framed STYLE attribute value: draw a frame around the text constant control.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Rectangle:

The following four attributes decide the text constant control’s x and y axis position,
its height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

Foreground color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... Dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

Copyright © Software AG 2002330

Dialog EditorText Constant Control Attributes Window

Timer Attributes Window

 Accessible Using

1. "Dialog > Timers"; or
2. CTRL+ALT+I.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Timer:
Displays the handle names and the TIMER-INTERVAL attribute values of the timers
already created. (You may create up to 16 timers per dialog).

Selected Timer:
In this group frame, you assign attribute values to the timer selected in the "Timers" list box
on the left.

Name Handle name of the timer (may be overwritten with another name starting with the # sign).

Interval TIMER-INTERVAL attribute value.

Events Dialog box for editing event handlers.

New Creates a new timer.

Cut
Cuts the selected timer and copies it to the clipboard. (You can cut and paste one or several
timers).

Paste

Pastes timer(s) from the clipboard.

Note:
The "New" and "Paste" entries insert timers behind the currently selected timer, or, if none
is selected, at the top of the list. You deselect timers by holding down CTRL while clicking
on the selected timers.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

331Copyright © Software AG 2002

Timer Attributes WindowDialog Editor

Toggle Button Control Attributes Window

 Accessible Using

1. Double-click on the toggle-button control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Copyright © Software AG 2002332

Dialog EditorToggle Button Control Attributes Window

Entry in
Attributes
Window

Represents

Name Handle name of the toggle-button control (may be overwritten with another name).

Array... Dialog box for defining an array of toggle-button controls.

String STRING attribute value.

... Dialog box for determining sources of STRING attribute values.

Font Output field where the font currently selected is displayed.

... Dialog box for selecting fonts.

DIL text DIL-TEXT attribute value (string).

... Dialog box for determining sources of DIL-TEXT attribute values.

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated with
the control.

Help ID
HELP-ID attribute value. You must use the help topic’s .h file to map the numerical ID
that you enter to the corresponding help topic ID (created by a markup in the .hlp file).

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value.

Checked CHECKED attribute value.

Foreground color:

Selection box FOREGROUND-COLOUR-NAME attribute value.

... Dialog box for editing FOREGROUND-COLOUR-VALUE attribute value.

Background
color:

Selection box BACKGROUND-COLOUR-NAME attribute value.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

Rectangle:

The following four attributes decide the toggle-button control’s x and y axis position, its
height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

333Copyright © Software AG 2002

Toggle Button Control Attributes WindowDialog Editor

Toolbar Attributes Window

 Accessible Using

1. "Dialog > Toolbar"; or
2. first check the "Toolbar" entry in the dialog attributes window, then double-click on the dummy toolbar in

the dialog; or select ’Toolbar...’ from the toolbar’s context menu.
3. CTRL+ALT+T.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in
Attributes
Window

Represents

Name Handle name of the toolbar (may be overwritten with another name).

Position TOOLBAR-POS attribute values.

Wrapped
STYLE attribute value: if set and there are more toolbar items than can be displayed on the
top of the dialog, the toolbar wraps around to a new line. (The default: the toolbar can be
scrolled with the two small arrow push buttons on the left of the toolbar.)

Margin-X
MARGIN-X attribute value (specifies which margin to the left, to the right and above the
bitmaps is displayed in the toolbar area. This attribute only applies if TOOLBAR-POS is set
to TB-LEFT or TB-RIGHT.

Margin-Y
MARGIN-Y attribute value (specifies which margin to the left, above and below the
bitmaps is displayed in the toolbar area. This attribute only applies if TOOLBAR-POS is set
to TB-TOP or TB-BOTTOM.

Item width ITEM-W attribute value (specifies the width of all items in the toolbar).

Item height ITEM-H attribute value (specifies the height of all items in the toolbar).

Toolbar Displays the handle name and the BITMAP-FILE-NAME of the existing toolbar items.

Selected toolbar
item:

In this group frame, you assign attribute values to the toolbar item selected in the "Toolbar
items" group frame on the left.

Name Handle name of the toolbar item (may be overwritten with another name).

Type MENU-ITEM-TYPE attribute value for the selected toolbar item.

Same as
SAME-AS attribute value (not for MENU-ITEM-TYPE "Separator"); the selection box
displays the menu items available.

Bitmap BITMAP-FILE-NAME attribute value.

...
Dialog box for determining sources of BITMAP-FILE-NAME attribute values. Also
provides a list of all available bitmaps to be used.

DIL text DIL-TEXT attribute value (string).

...
Dialog box for determining sources of DIL-TEXT attribute values (not for
MENU-ITEM-TYPE "Separator").

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

Copyright © Software AG 2002334

Dialog EditorToolbar Attributes Window

Entry in
Attributes
Window

Represents

Command ID CLIENT-KEY attribute value (used in this context for associating a command ID).

Background
Color:

Selection box

BACKGROUND-COLOUR-NAME attribute value to be used for display of the item’s
bitmap (if any).
If ’default’ is specified, the color of the first (top-left) pixel in the bitmap determines the
background color.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value (not for MENU-ITEM-TYPE "Separator").

Checked CHECKED attribute value (not for MENU-ITEM-TYPE "Separator").

Shared
SHARED attribute value. CLICK events for this item will be forwarded to the active MDI
child dialog (if any).
This attribute is ignored for non-MDI dialogs.

Style:

Scaled STYLE attribute value: allows for stretched bitmaps to be displayed on the toolbar items.

Transparent
STYLE attribute value: bitmap pixels in the background color do not change the state of the
screen.

Events
Dialog box for editing event handlers; may only be used with the approriate "Type" entry;
may not be used if the toolbar item is associated with a menu item using the SAME-AS
attribute.

New Creates a new toolbar item.

Cut
Cuts a selected toolbar item and copies it to the clipboard. You can also cut and paste
several toolbar items at once.

Paste

Pastes a toolbar item from the clipboard.
Note:
The "New" and "Paste" entries insert toolbar items behind the currently selected item, or,
if no items are selected, at the top of the list. You deselect items by holding down CTRL
while clicking on the selected items.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

Tool Bar Control Attributes Window

 Accessible Using

1. Double-click on the tool bar control; or
2. if selected: "Control > Attributes" or by selecting ’Attributes...’ from the control’s context menu or
3. if selected: ENTER.

335Copyright © Software AG 2002

Tool Bar Control Attributes WindowDialog Editor

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in Attributes
Window

Represents

Name Handle name of the tool bar control (may be overwritten with another name).

Attributes...

Subordinate window for editing the tool bar control’s attribute values. For more
information,
see Tool Bar Control Attributes Subwindow. (Normally, all attributes of a dialog
element can
be edited in the attributes window. Instead, the attributes of each tool bar item in the
tool bar
control can be edited here. For reasons of space, the tool bar control’s attributes are
edited in a separate subwindow).

Tool bar items:

Displays the handle name and the BITMAP-FILE-NAME attribute values of the tool
bar items already created.
If you click on a tool bar item, its attributes are displayed for editing. You can also
select several tool bar items for cutting and pasting.

New Creates a new tool bar item.

Cut
Cuts a selected tool bar item and copies it to the clipboard. You can also cut and paste
several tool bar items at once.

Paste

Pastes a tool bar item from the clipboard.
Note:
The "New" and "Paste" entries insert tool bar items behind the currently selected item,
or, if no items are
selected, at the top of the list. You deselect items by holding down CTRL while
clicking on the selected items.

Selected tool bar
item:

In this group frame, you assign attribute values to the tool bar items selected in the
"Tool bar items" list box on the left.

Name Handle name of the tool bar item (may be overwritten with another name).

Type MENU-ITEM-TYPE attribute value for the selected tool bar item.

Width
RECTANGLE-W attribute value. This is only available for MENU-ITEM-TYPE
"Separator"
and specifies the separator width (0 = default separator width).

Same as
SAME-AS attribute value (only available for MENU-ITEM-TYPE "Normal");
the selection box displays the signals and menu items available.

Bitmap BITMAP-FILE-NAME attribute value.

...
Dialog box for determining sources of BITMAP-FILE-NAME attribute values.
Also provides a list of all available bitmaps to be used.

DIL text DIL-TEXT attribute value (string).

...
Dialog box for determining sources of DIL-TEXT attribute values (not for
MENU-ITEM-TYPE "Separator").

Accelerator ACCELERATOR attribute value.

... Dialog box for determining sources of ACCELERATOR attribute values.

Copyright © Software AG 2002336

Dialog EditorTool Bar Control Attributes Window

Entry in Attributes
Window

Represents

Tooltip TOOLTIP attribute value.

... Dialog box for determining sources of TOOLTIP attribute values.

Command ID CLIENT-KEY attribute value (used in this context for associating a command ID).

Background Color:

Selection box

BACKGROUND-COLOUR-NAME attribute value to be used for display of the item’s
bitmap (if any).
If ’default’ is specified, the color of the first (top-left) pixel in the bitmap determines the
background color.

... Dialog box for editing BACKGROUND-COLOUR-VALUE attribute value.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value (not for MENU-ITEM-TYPE "Separator").

Checked CHECKED attribute value (not for MENU-ITEM-TYPE "Separator").

Shared
SHARED attribute value. CLICK events for this item will be forwarded to the active
MDI child dialog (if any).
This attribute is ignored for non-MDI dialogs.

Style:

Scaled
STYLE attribute value: allows for stretched bitmaps to be displayed on the toolbar
items.

Wrapped STYLE attribute value: if set, tool bar item is started on a new row.

Transparent
STYLE attribute value: bitmap pixels in the background color do not change the state
of the screen.

Events

Dialog box for editing event handlers; may only be used with the approriate "Type"
entry;
may not be used if the toolbar item is associated with a menu item using the SAME-AS
attribute.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

337Copyright © Software AG 2002

Tool Bar Control Attributes WindowDialog Editor

Tool Bar Control Attributes Subwindow

 Accessible Using

1. · Click on the "Attributes..." button in the tool bar control attributes window.

Entries

Note:
For context-sensitive help on attribute entries, select the entry so it has the focus, and press F1.

Entry in Attributes
Subwindow

Represents

String
STRING attribute value. This is the text displayed in the window caption when a
dockable tool bar control is floated.

... Dialog box for determining sources of STRING attribute values.

Control ID CLIENT-KEY attribute value (used in this context for associating a user-defined ID).

Context Menu
CONTEXT-MENU attribute value. Specifies the context menu (if any) associated
with the control.

Docking

DOCKING attribue value. Determines the sides of the dialog (if any) on which this
tool bar is
allowed to dock (if dockable). Note: The dialog itself must also support docking on
the specified side(s).

Location

LOCATION attribute value. Determines the side of the dialog on which the tool bar
control
is initially positioned, or whether the tool bar control is floated in a separate window
(if dockable).

Internal Metrics:

Item width ITEM-W attribute value (specifies the width of all items in the toolbar).

Item height ITEM-H attribute value (specifies the height of all items in the toolbar).

Margin-X
MARGIN-X attribute value. Specifies the margin (in pixels) to the left and right of the
tool bar items (for horizontal tool bars) or above and below the tool bar items (for
vertical tool bars).

Margin-Y

MARGIN-Y attribute value. Specifies the margin (in pixels) above and below the tool
bar items
(for horizontal tool bars) or to the left and right of the tool bar items (for vertical tool
bars).

Borders:

Left
STYLE attribute value. Species whether a border should be displayed
on the left side of the control. This option is not available for dockable tool bars.

Top
STYLE attribute value. Species whether a border should be displayed
at the top of the control. This option is not available for dockable tool bars.

Right
STYLE attribute value. Species whether a border should be displayed on
the right side of the control. This option is not available for dockable tool bars.

Bottom
STYLE attribute value. Species whether a border should be displayed at
the bottom of the control. This option is not available for dockable tool bars.

Copyright © Software AG 2002338

Dialog EditorTool Bar Control Attributes Subwindow

Entry in Attributes
Subwindow

Represents

Rectangle:

The following four attributes decide the tool bar control’s x and y axis position, its
height and its width on the screen.
X - RECTANGLE-X attribute value.
Y - RECTANGLE-Y attribute value.
W - RECTANGLE-W attribute value.
H - RECTANGLE-H attribute value.
Note: the positions are relative to the dialog window.

Style:

Gripper
STYLE attribute value. Determines whether a gripper bar is displayed within
the tool bar control. Note: the gripper bar does not appear if the tool bar is floated.

Flat
STYLE attribute value. Indicates that the tool bar items should be displayed with a flat
appearance.

Dynamic
STYLE attribute value. Indicates that the tool bar control can be resized when floated.
Note: dynamic tool bars cannot contain any child controls.

3-D border
STYLE attribute value. If set, the tool bar control’s border (if any) is drawn with a
3-D appearance.

State:

Visible VISIBLE attribute value.

Enabled ENABLED attribute value (not for MENU-ITEM-TYPE "Separator").

Dockable
DRAGGABLE attribute value. If set, the tool bar control may be docked and/or
floated in its own separate window.

Tooltips
HAS-TOOLTIP attribute value. If not set, display of the tool tip text (if any) for the
tool bar items will be suppressed.

Flyby text
HAS-DIL attribute value. If not set, display of the DIL text (if any) for the tool bar
items will be suppressed.

OK Save settings and exit the window.

Cancel Exit the window without saving the settings.

Help Provides online help on the attributes window.

339Copyright © Software AG 2002

Tool Bar Control Attributes SubwindowDialog Editor

Dialog Boxes
Array
Data Area - Local, Parameter
Data Area - Global
Dialog Compile Error
Events
Import Data Field
Font
Source
Subroutines

Array

 Accessible Using

1. First open the attributes window of a dialog or dialog element by double-clicking on it or by pressing
ENTER or by selecting ’Attributes...’ from the dialog or dialog element’s context menu.

2. Then click on the "Array..." push button.

Purpose

Define an array of dialog elements of the same type. This is especially useful for quickly creating a layout for
end user input. An array of dialog elements will be treated as an entity by the dialog editor, that is, you can edit
the entire array (move, resize, etc.). For example, you can create a column of evenly spaced input field controls
plus a column of corresponding text constant controls.

Entries

Entry Function

Dimensions
None means there will be no array, one means there will be a row or a column, two means there
will be an array with both an x and a y axis.

Bounds Dialog elements on the first and second axis from occurrence to occurrence.

Spacing Number of pixels between occurrences aligned on the x and y axis.

Arrangement
Mutually exclusive options of how to arrange the dialog elements; the last axis is either the
horizontal or the vertical one.

Data Area - Local, Parameter

 Accessible Using

"Dialog > Parameter Data Area/Local Data Area"; or
CTRL+ALT+P/L, or (for LDA’s) by selecting ’Local Data Area...’ from the dialog’s context menu.

Purpose

Enter inline data definitions for a dialog. In a parameter data area, you must include all the parameters that you
want to be passed on to the current dialog in an OPEN DIALOG or SEND EVENT statement. In a local data
area, you must include all the user-defined variables or other variables that you want to use in an event handler
code section or a subroutine of the current dialog. Note that the dialog editor automatically generates the data
definitions for the dialog elements.

Copyright © Software AG 2002340

Dialog EditorDialog Boxes

The "Using" button opens a dialog box that allows you to include existing inline data definitions.

Data Area - Global

 Accessible Using

1. "Dialog > Global Data Area"; or
2. CTRL+ALT+G.

Purpose

Select an existing global data area from a list of available global data areas. To select, click on the entry in the
list box. The data area is then displayed in the input field. To select, you can also enter the name of a global data
area in the input field.

To create a new global data area, you use the data area editor.

Dialog Compile Error

Appears When

You check/run/stow a dialog, the compiler finds an error in the dialog’s generated code, and you select "Edit" in
the "Error" dialog box.

Purpose

Describes the error and lists the line of generated code together with the line number. If you press the OK push
button, the section of the dialog appears where the compiler has located the error.

If you have saved your dialog sources in non-enhanced format and the enhanced listing option is enabled, any
Natural error message will contain an incorrect line number. To ensure that you get the correct line number,
disable the enhanced listing option. As under Natural for Windows and Unix/OpenVMS Version 4.1, dialog
sources are always saved in enhanced format, this line number inconsistency does not exist.

 To disable enhanced dialog list mode

From the "Options" menu, choose "Enhanced dialog list mode".
The menu item no longer has a check mark. This indicates the option is disabled.

341Copyright © Software AG 2002

Data Area - GlobalDialog Editor

Events

 Accessible Using

1. Click on the "Events..." push button in an attributes window; or
2. "Dialog > Event Handlers" for dialog events; or
3. CTRL+ALT+E or SHIFT+ENTER for dialog events; or
4. "Control > Event Handlers" for a selected dialog element; or
5. CTRL+SHIFT+E or SHIFT+ENTER for a selected dialog element.

Purpose

Enter Natural event handler code for those events that are provided for the dialog or dialog element; also allows
you to enter event handler code for user-defined SEND EVENTs.

Copyright © Software AG 2002342

Dialog EditorEvents

Entries

Entry Function

Event
Name

This selection box lists the names of the system-provided events, such as the click event; it also lists
the names of the user-written events that can be triggered by specifying SEND EVENT
user-written-event-name. Please note that user-written-event-names are limited to 32 characters and
that the option only applies to dialog events.

Editor
Invokes the program editor for the currently displayed event. Before using the program editor the
dialog box must be closed using the ’OK’ push button.

Rename
(Only applies to dialog events). This push button opens a dialog box where you can rename a
user-written event.

New
(Only applies to dialog events). This push button opens a dialog box where you can enter the name
of a new, user-written event.

Clear
(Only applies to dialog events). This push button opens a message box where you can specify
whether you want to delete the code of a system-provided event or the code and the name of a
user-written event.

Use

This push button opens a dialog box where you can select a subprogram or a subroutine by
choosing an item from a list of objects or by entering the object name in the input field. Depending
on whether it is a subprogram or a subroutine, you get a display of whether the CALLNAT or the
PERFORM statement will be used. After having selected the subprogram or subroutine, you leave
the dialog box by choosing OK. The subprogram or subroutine will be used by your current event
handler code section. At the position where you left the event handler section, you will find the
CALLNAT or PERFORM statement with the name of the object.

Suppress
Suppresses an event for which a corresponding SUPPRESS-eventname-EVENT attribute exists.
The event is also suppressed if you leave the event handler section empty.

Event
Info...

(Only applies to ActiveX control events): Provides information on the parameters of each event.

(Edit
area)

Here you enter your Natural code that you want to be triggered when the event occurs.

OK Saves the code (and name) of the event handler section and exits the dialog box.

Cancel Exits the dialog box without saving the settings.

Help Provides online help.

343Copyright © Software AG 2002

EventsDialog Editor

Import Data Field

 Accessible Using

"Insert > Import > Input Field/Selection Box".

Purpose

Create an input field control or a selection box control based on a data field from another Natural object in
another Natural library. The dialog element is created with a linked variable as the source of its STRING
attribute value. You must declare this linked variable in a data area of the dialog.

Entries

Entry Function

Library
Selection box where you can select the library containing the Natural object with the data field of
your choice.

Type Mutually exclusive options for Natural object types.

Object
List

Once you have chosen a library and an object type, all objects with these criteria will be displayed
here.

Data
fields

Once you have chosen an object from the object list, all data fields defined in this object will be
displayed.

Import
Once you have chosen one or several data field(s), you push this button and its content will be
imported into your input field control or selection box control.

Cancel Exits the dialog box without saving the settings.

Help Provides online help.

Font

 Accessible Using

1. First open the attributes window of a dialog or dialog element by double-clicking on it or by pressing
ENTER.

2. Then click on the "..." push button next to the font selection box.

Purpose

Select a font type, such as "Times New Roman", a font face, such as "bold", and a font size, such as "10". After
selecting your font, a sample is displayed. When you choose OK, a font control is generated and assigned to the
FONT-HANDLE attribute of the dialog element you are currently editing.

Copyright © Software AG 2002344

Dialog EditorImport Data Field

Source

 Accessible Using

1. First open the attributes window of a dialog or dialog element by double-clicking on it or by pressing
ENTER.

2. Then click on the "..." push button to the left of an attribute entry.

Purpose

Define the source of attribute values, for example for the STRING attribute.

Entry Function

Value Current attribute value; the name of this entry varies depending on the attribute source.

Attribute
Source:

Constant Text string.

Message file
Number of the string in the message file. If you have specified an array of dialog elements, the
number of the first string appears here. The number of the string for each occurrence in the array
is generated in ascending order from the first string number onwards.

Variable

When a dialog is opened with an OPEN DIALOG statement, the content of this variable will be
assigned to the attribute. You can dynamically change the content of this variable in the
before-open event handler.

For more information, see Message Files and Variables as Sources of Attribute Values.

Linked
variable

Only applicable to input field controls and selection box controls. The input of an end user will
automatically be moved to this variable when the dialog element is left. When you have changed
the content of a linked variable dynamically (during processing of an event handler section), you
can use the PROCESS GUI statement action REFRESH-LINKS and the refreshed variable
content will be displayed in the input field control or selection box control.

Array
Values:

Attribute values if there is an array of dialog elements.

Individual
values

Each occurrence in the array will have its individual attribute value.

Repeated
single value

All occurrences in the array will have the same attribute value.

OK Saves the settings and exits the dialog box.

Cancel Exits the dialog box without saving the settings.

Help Provides online help.

345Copyright © Software AG 2002

SourceDialog Editor

Subroutines

 Accessible Using

1. "Dialog > Inline subroutines"; or
2. CTRL+ALT+S.

Purpose

Enter standard sections of Natural code to be used in several event handler sections.

Entries

Entry Function

Subroutine
name

This selection box lists the names of the existing subroutines for the dialog.

Editor
Invokes the program editor for the currently displayed subroutine. Before you use the program
editor, the dialog box must be closed using the ’OK’ push button.

Rename This push button opens a dialog box where you can rename a subroutine.

New
This push button opens a dialog box where you can enter the name of a new subroutine.
Subroutine names specified in the dialog editor are limited to 120 characters. The first 32
characters must be unique.

Delete
This push button opens a message box where you can specify whether you want to delete the
code and the name of a subroutine.

Action:
Here you enter your Natural code in free form, that is, without having to specify the DEFINE
SUBROUTINE and END-SUBROUTINE statements.

OK Saves the code and name of the subroutine and exits the dialog box.

Cancel Exits the dialog box without saving the settings.

Help Provides online help.

Copyright © Software AG 2002346

Dialog EditorSubroutines

Component Browser
The following topics are covered below:

Introduction
User Interface
Application Development Support

Introduction
The Component Browser can be used to view ActiveX components which are available for developing NaturalX
applications. It presents the information in a way that is especially useful to Natural application developers.

The Component Browser comprises the following features:

Available ActiveX components and their dispatch and dual interfaces are listed.
Data types are mapped to Natural formats.
The external components’ help files are directly accessible.
Natural programming examples are automatically generated.
Many programming errors can be prevented.

User Interface
Tree View
Data View
Interaction Tree View and Data View
Menu

The Component Browser uses a split window. The left pane shows a tree view representing the available external
components and the right pane shows information on a selected item.

Tree View

Groups

At startup the Component Browser’s tree view consists of four nodes that group the available external
components.

All ActiveX Components

This group lists ActiveX Controls and Automation Objects.

ActiveX Controls

This group lists only the ActiveX Controls.

Automation Objects

This group lists the Automation Objects.

347Copyright © Software AG 2002

Component BrowserComponent Browser

Interfaces

The last group lists all dual and dispatch interfaces that can be addressed in a Natural application. In this context,
their relation to an ActiveX component is not taken into account.

Tree Nodes

In general, a node in the tree view represents either an ActiveX component or an interface. It provides textual
information about the node and has a specific icon assigned that represents additional information.

The following table lists all available nodes with their icons and gives a short description:

Type Icon Description

Group Group node.

ActiveX component ActiveX component.

Interface Interface of the current ActiveX component.

Default interface Default interface of the current ActiveX component.

Order

By default, the ActiveX component nodes are inserted in alphabetical order of their external names. If you wish
to see them sorted according to their ProgID, select menu ’View > Show by ProgID’.

Interface nodes are always inserted in alphabetical order.

Copyright © Software AG 2002348

Component BrowserOrder

Data View
The data view uses a property sheet to display the specific information for a selected node. This sheet consists of
four pages: General, Properties, Events and Methods.

General

Components and interface specific information such as name, Global Unique ID and help file name. It is always
the active page if a new node is selected.

Properties

Specific information about the properties offered by an interface. These are, for example, the property’s name
and type.

Events

Specific information on a component’s event interface. These are, for example, the event’s name and parameters.

Methods

Specific information about the methods and GET properties and PUT properties offered by an interface.
Displayed are, for example, the method’s name, return type and parameters.

These pages are discussed in more detail in the context of interaction between tree and data view.

349Copyright © Software AG 2002

Data ViewComponent Browser

Interaction Tree View and Data View
The contents of the ’data view’ depend on the object selected in the tree view.

Group

If any of the group nodes ’All ActiveX Components’, ’ActiveX Controls’, ’Automation Objects’ or ’Interfaces’
is selected, the data view remains empty.

ActiveX Component

If a component node is selected, all four property pages are available. The page General provides the following
information:

Name Component name

Description Short textual description.

Unique ID Global Unique ID (GUID).

ProgID ProgID.

Example
Natural statements that show how to use the component.
(see Example Construction)

Help Help file name. This file can be opened by pressing

Copyright © Software AG 2002350

Component BrowserInteraction Tree View and Data View

If a component is selected and the page Properties, Events or Methods is activated, the information displayed
on this page refers to the default interface.

351Copyright © Software AG 2002

ActiveX ComponentComponent Browser

Interface

If an interface node is selected the number of available property pages depends on the type of the interface.

If the Interface is browsed in the context of a component and if it is an Event Interface, then only the pages
General and Events are set.
Otherwise, the pages General, Properties and Methods are set.

In both cases, the page General provides the following information:

Name Interface name

Description Short textual description.

Unique ID Global Unique ID (GUID).

Help Help file name. This file can be opened by pressing

Copyright © Software AG 2002352

Component BrowserInterface

Interfaces

The page Properties provides the list of properties that belong to the selected interface. For a specific property
the following information is displayed:

Description Short textual description for the selected property.

Type
Definition

List of valid Natural formats for the property’s type. Additional type info on the selected
Natural format, e.g. valid values for enumeration types.

Example (see Example Construction).

Help Help file name. This file can be opened by pressing

353Copyright © Software AG 2002

InterfaceComponent Browser

The page Methods provides the list of methods that belong to the selected interface. This list includes
GET-properties and PUT-properties. For a specific method or GET or PUT property the following information is
displayed:

Description Short textual description for the selected method.

Return Type
Definition

List of valid Natural formats for the method’s type.
Additional type info on a selected Natural format, e.g. Name and GUID of the interface if a
handle of object corresponds to a dispatch interface. This interface can then be found in group
’Interfaces’.

Parameter
Definition

List of parameters that are required by the method.
List of Natural formats for each parameter together with additional info on the call mode (by
ref). Additional type info on a selected Natural format, e.g. Name and GUID of the interface if
a handle of object corresponds to a dispatch interface. This interface can then be found in
group ’Interfaces’.

Example (see Example Construction).

Help Help file name. This file can be opened by pressing

Copyright © Software AG 2002354

Component BrowserInterface

Event Interfaces

The page Events provides the list of events that belong to the selected interface. For a specific event the
following information is displayed:

Description Short textual description for the selected event.

Parameter
Definition

List of parameters that are required by the event.
List of valid Natural formats for each parameter together with additional info on the call mode
(by ref). Additional type info on selected Natural format, e.g. Name and GUID of the interface
if a handle of object corresponds to a dispatch interface. This interface can then be found in
group ’Interfaces’.

Example (see Example Construction).

Help Help file name. This file can be opened by pressing

355Copyright © Software AG 2002

InterfaceComponent Browser

Menu
File

Item Description

EXIT Leaves the Component Browser.

Edit

Item Description

Copy
This item is enabled if the data view has the focus.
The selected text is copied to the clipboard.

Copy CLSID to Clipboard
This item is enabled if either the tree view or the data view has the focus.
A component’s CLSID is copied to the clipboard.

Copy ProgID to Clipboard
This item is enabled if either the tree view or the data view has the focus.
A component’s ProgID is copied to the clipboard.

View

Item Description

Show by
ProgID

This item is enabled if the tree view has the focus.
By default, the tree view is sorted according to the component’s external names. If this option
is checked, it is sorted according to their ProgIDs. The currently displayed information is
updated.

Show Current
Version

This item is enabled if the tree view has the focus.
By default, the tree view shows all versions of a component.
If this option is checked, only the current version of a component is shown. The currently
displayed information is updated.

Status Bar Shows or hides the status bar.

Refresh
This item is enabled if the tree view has the focus.
The tree view is refreshed, i.e. the information currently displayed is updated.

Help

Item Description

About Component Browser
This item is enabled if either the tree view or the data view has the focus.
Information on copyrights, version etc. is displayed.

Copyright © Software AG 2002356

Component BrowserMenu

Application Development Support

Example Construction

The data view provides detailed examples of Natural code that show how to use a selected object in a Natural
application. Which statements are generated depends on the object’s type.

The example code or just parts of it can be selected, copied to the clipboard and used directly in an application.
Only variable names might have to be adapted to meet the application’s requirements.

Frequently used identifiers such as CLSID and ProgID can be copied directly to the clipboard using menu item
’Edit > Copy CLSID to Clipboard’ or ’Edit > Copy ProgID to Clipboard’.

ActiveX Controls

For ActiveX controls, the appropriate PROCESS GUI statement is generated that shows how to use these
components in Natural applications.

General

The example on the page General shows how an object of this type is instantiated. Here #OCX-1 denotes a
variable that can be adapted to the current application.

357Copyright © Software AG 2002

Application Development SupportComponent Browser

Copyright © Software AG 2002358

Component BrowserExample Construction

Properties

The example on the page Properties shows how to assign a property to a variable and how to assign a variable
to a property. Here #OCX-1 is the defined object handle and #aVariable refers to an application-specific
variable. Both names can be adapted if required.

359Copyright © Software AG 2002

Example ConstructionComponent Browser

Events

The example on the page Events shows how to query event parameters by name or by position. Here #OCX-1 is
the defined object handle and #aVariable refers to an application-specific variable. Both names can be adapted if
required.

Copyright © Software AG 2002360

Component BrowserExample Construction

Methods

The example on the page Methods shows how to use methods, GET-properties and PUT-properties. Here
#OCX-1 is the defined object handle and #aVariable refers to an application-specific variable. Both names can
be adapted if required. The actual parameter names are already inserted into the statement if they are available.
Otherwise default parameter names P0, P1, ... are used as placeholders. These names can be replaced by
application-specific variables.

361Copyright © Software AG 2002

Example ConstructionComponent Browser

Automation Objects

General

The example on the page General shows how an object of this type is instantiated. Here #aObject denotes a
variable that can be adapted to the current application.

Copyright © Software AG 2002362

Component BrowserAutomation Objects

Properties

The example on the page Properties shows how to assign a property to a variable and how to assign a variable
to a property. Here #aObject is the defined object handle and #aVariable refers to an application-specific
variable. Both names can be adapted if required.

363Copyright © Software AG 2002

Automation ObjectsComponent Browser

Methods

The example on the page Methods shows how to use methods. Here #aObject is the defined object handle and
#aVariable refers to an application-specific variable. Both names can be adapted if required.

The actual parameter names are already inserted into the statement if they are available. Otherwise default
parameter names P0, P1, ... are used as placeholders. These names can be replaced by application-specific
variables.

Copyright © Software AG 2002364

Component BrowserAutomation Objects

Interfaces

For interfaces that belong to group ’Interfaces’ and that are not considered in the context of a class, the examples
are generated as for Automation Objects. Only the CREATE OBJECT statement is left aside.

Properties

The example on the page Properties shows how to assign a property to a variable and how to assign a variable
to a property. Here #aObject is the defined object handle and #aVariable refers to an application-specific
variable. Both names can be adapted if required.

365Copyright © Software AG 2002

InterfacesComponent Browser

Methods

The example on the page Methods shows how to use methods. Here #aObject is the defined object handle and
#aVariable refers to an application-specific variable. Both names can be adapted if required.

The actual parameter names are already inserted into the statement if they are available. Otherwise default
parameter names P0, P1, ... are used as placeholders. These names can be replaced by application-specific
variables.

Copyright © Software AG 2002366

Component BrowserInterfaces

Plug-In Manager
The Natural Studio user interface is extensible by plug-ins. Part of the Natural Studio functionality itself is
delivered in the form of plug-ins.

Once a plug-in is installed in Natural Studio, it needs not to be active and available in every Natural session and
for every user. Which plug-ins are actually active and visible is configurable on a per user basis. The information
which plug-ins are active for a user is stored in the user’s profile in the registry. The user selects plug-ins for
activation and deactivation with the Plug-in Manager.

The activation of plug-ins can also be entirely disabled and enabled on user basis. Initially, plug-in activation is
disabled. In order to work with plug-ins, you must first enable plug-in activation.

Note:
A sample plug-in is delivered in source code in the library SYSEXPLG. With the current version of Natural
Studio the plug-in interface is not released for external use. The interface will be further extended and possibly
modified in upcoming versions. With the current version, you are therefore not recommended to implement your
own plug-ins.

The following topics are covered:

Purpose of the Plug-In Manager
Enabling Plug-In Activation
Activating the Plug-In Manager
Deactivating the Plug-In Manager
Using the Plug-In Manager
Natural Studio Sample Plug-In

Purpose of the Plug-In Manager
The Plug-in Manager lists all installed plug-ins and shows their name, type, activation status and activation
mode. In addition, it enables you to activate and deactivate installed plug-ins in order to configure your personal
development environment.

Enabling Plug-In Activation
The activation of plug-ins can be entirely enabled and disabled on a per user basis. As default, plug-in activation
is disabled. In order to work with plug-ins, you must first enable plug-in activation.

 To enable Plug-in activation

Check the checkbox "Enable plug-ins" in Tools > Options > Workspace.

 To disable Plug-In activation

Uncheck the checkbox "Enable plug-ins" in Tools > Options > Workspace.

Activating the Plug-In Manager
The Plug-in Manager is itself implemented as a plug-in written in Natural. By definition, the Plug-in Manager
itself cannot be dynamically activated. If plug-in activation is enabled, the Plug-in Manager is instead always
available under the fixed item Plug-in Manager in the Tools menu bar.

367Copyright © Software AG 2002

Plug-In ManagerPlug-In Manager

Deactivating the Plug-In Manager
The Plug-in Manager is included in the list of plug-ins where it can be deactivated like any other plug-in (see To
deactivate a plug-in).

But, of course, it can then not be reactivated manually in the same Natural Studio session, because in order to do
so, you would need an active Plug-in Manager. However, as its activation mode is Automatic, it will be activated
again at the start of the next Natural Studio session if plug-in activation is enabled.

Using the Plug-In Manager
If you do not see the Tools menu bar, first make it visible by selecting Tools > Customize > Toolbars.

 To start the Plug-in Manager

Click its icon in the Tools menu bar.

The Plug-in Manager displays the list of plug-ins available in an installation and shows them in a list. The
plug-ins that are already active for you are marked. You may activate or deactivate plug-ins.

Using context menu commands, you can modify the activation status and mode of individual Plug-ins.

 To activate a plug-in

1. Select the plug-in in the list.
2. Click the right mouse button.
3. From the resulting context menu, choose Activate.

 To deactivate a plug-in

1. Select the plug-in in the list.
2. Click the right mouse button.
3. From the resulting context menu, choose Deactivate.

 To cause the plug-in to be activated each time you start Natural Studio

1. Select the plug-in in the list.
2. Click the right mouse button.
3. From the resulting context menu, choose Activation mode > Automatic.

 To cause the plug-in to stay inactive when you start Natural Studio

1. Select the plug-in in the list.
2. Click the right mouse button.
3. From the resulting context menu, choose Activation mode > Manual.

You can later activate the plug-in manually using the Plug-in Manager.

Natural Studio Sample Plug-In
Purpose of the Natural Studio Sample Plug-In
Activating the Sample Plug-In
Using the Sample Plug-In
Deactivating the Sample Plug-In

Copyright © Software AG 2002368

Plug-In ManagerDeactivating the Plug-In Manager

Purpose of the Natural Studio Sample Plug-In

The Natural Studio Sample Plug-in demonstrates how the Natural Studio metastructure can be extended with
plug-ins that define your own object types, assign commands to them and display objects as nodes in tree views
and list views.

The sample plug-in shows information about the Natural User Exit subprograms contained in the library
SYSEXT. It allows users to list their documentation and to execute a test program for each of them.

The source code of the sample plug-in (contained in the library SYSEXPLG) is intended to give an impression of
how plug-ins can be implemented with Natural Studio. With the current version of Natural Studio the plug-in
interface itself is not released for external use. With this version, it is therefore not recommended to use the
interface to implement your own plug-ins.

Activating the Sample Plug-In

The sample plug-in is installed automatically during Natural Studio installation. By default the activation of
plug-ins is disabled. Therefore in order to use the sample plug-in, you must first enable plug-in activation and
then activate the sample plug-in.

 To enable Plug-in activation

Check the checkbox "Enable plug-ins" in Tools > Options > Workspace.

 To activate the sample plug-in:

1. Start the Plug-in Manager using Tools > Configuration Tools > Plug-in Manager.
2. Select "Natural Studio Sample Plug-in" in the "Plug-in Manager" window.
3. Select the Activate command in the context menu
4. Close the Plug-in Manager

Using the Sample Plug-In

During activation, the plug-in creates and displays a toolbar that contains two commands: "Open Tree View" and
"Open List View". These two commands also appear in the Sample Plug-in sub-menu in the Tools menu and in
the context menus of the Natural object types Program, Subprogram and Text.

Command "Open Tree View":

If a user exit subprogram (subprogram USRnnnnN in library SYSEXT), its description (text member
USRnnnnT in library SYSEXT) or its test program (program USRnnnnP in library SYSEXT) is selected,
the command displays information about this user exit in a tree view.
If none of the above is selected, the command displays information about all user exit in a tree view.

Command "Open List View":

Displays the same information in a list view

Deactivating the Sample Plug-In

 To deactivate the sample plug-in:

1. Start the Plug-in Manager using Tools > Configuration Tools > Plug-in Manager.
2. Select "Natural Studio Sample Plug-in" in the "Plug-in Manager" window
3. Select Deactivate in the context menu.
4. Close the Plug-in Manager

369Copyright © Software AG 2002

Purpose of the Natural Studio Sample Plug-InPlug-In Manager

Large and Dynamic Variables/Fields
The following topics are covered below:

Introduction
Definition of Dynamic Variables
System Variable *LENGTH - field
Size Limitation Checks
Statements EXPAND and REDUCE
Usage of Dynamic Variables

Introduction
Since version 4.1 Natural for Windows provides enhanced capabilities for the usage of large variables by
removing the existing size limitations and by providing for dynamic allocation of these variables at execution
time.

Large variables for alpha and binary data are based on the well known Natural formats A and B. The limitations
of 253 for format A and 126 for format B are no longer in effect. The new size limit is 1 GB. These large static
variables and fields are handled in the same manner as traditional alpha and binary variables and fields with
regard to definition, redefinition, value space allocation, conversions, referencing in statements, etc. All rules
concerning alpha and binary formats apply to these large formats.

In that the maximum size of large data structures (for example, pictures, sounds, videos) may not exactly be
known at application development time, Natural additionally provides for the definition of alpha and binary
variables with the attribute DYNAMIC. The value space of variables which are defined with this attribute will be
extended dynamically at execution time when it becomes necessary (for example, during an assignment
operation: #picture1 := #picture2). This means that large binary and alpha data structures may be processed in
Natural without the need to define a limit at development time. The execution-time allocation of dynamic
variable is of course subject to available memory restrictions. If the allocation of dynamic variables results in an
insufficent memory condition being returned by the underlying operating system, the ON ERROR statement can
be used to intercept this error condition; otherwise, an error message will be returned by Natural.

The new Natural system variable *LENGTH can be used to obtain the number of bytes of the value space which
are currently used for a given dynamic variable. Natural automatically sets *LENGTH to the length of the source
operand during assignments in which the dynamic variable is involved. *LENGTH(field) therefore returns the
size currently used for a dynamic Natural field or variable in bytes.

If the dynamic variable space is no longer needed, the REDUCE DYNAMIC VARIABLE statement can be used
to reduce the space used for the dynamic variable to zero (or any other desired size). If the upper limit of
memory usage is known for a specific dynamic variable, the EXPAND statement can be used to set the space
used for the dynamic variable to this specific size.

If a dynamic variable is to be initilialized, the MOVE ALL UNTIL statement should be used for this purpose.

Definition of Dynamic Variables
Because the actual size of large alpha and binary data structures may not be exactly known at application
development time, the definition of dynamic variables of formats A or B can be used to manage these structures.
The dynamic allocation and extension (reallocation) of large variables is transparent to the application
programming logic. Dynamic variables are defined without any length. Memory allocation will be done at
execution time implicitly, when the dynamic variable is used as a target operand or explicitly with an EXPAND
statement.

Copyright © Software AG 2002370

Large and Dynamic Variables/FieldsLarge and Dynamic Variables/Fields

Dynamic variables can only be defined in a DEFINE DATA statement using the following syntax:

level variable-name (A) DYNAMIC
level variable-name (B) DYNAMIC

A dynamic variable can only be defined as scalar (no dynamic array definition is possible).
A dynamic variable may not be contained in a REDEFINE clause and a redefinition of a dynamic variable or
of a group that contains a dynamic variable is not possible. The CONST and INIT clauses are invalid for
dynamic variables.

System Variable *LENGTH - field
The size of the currently used value space of a dynamic variable can be obtained from the system variable
*LENGTH. *LENGTH is set to the (used) length of the source operand during assignments automatically.

Note: Due to performance considerations, the allocated size may be larger than the used size. It is not possible
for the Natural programmer to obtain information about the currently allocated size. This is an internal value.

*LENGTH(field) returns the used size of a dynamic Natural field or variable in bytes. *LENGTH may be used
only for dynamic variables to get the currently used size.

Size Limitation Checks
Profile Parameter DSLM

For compatibility reasons, a size limitation check at compile time for fixed length variables can be done using
the DSLM parameter. The DSLM parameter limits the size to 32 KB per variable.

Profile Parameter USIZE

For dynamic variables, a size limitation check at compile time is not possible because no length is defined for
dynamic variables. The Size of User Buffer Area (USIZE) indicates the size of the user buffer in virtual
memory. The user buffer contains all data dynamically allocated by Natural. If a dynamic variable is allocated or
extended at execution time and the USIZE limitation is exceeded, an error message will be returned.

Statements EXPAND and REDUCE
The statements EXPAND and REDUCE are used to explicitly allocate and free memory space for a dynamic
variable.

Syntax:

EXPAND [SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2
REDUCE [SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

where operand1 is a dynamic variable and operand2 is a non-negative numeric size value.

The EXPAND statement is used to extend the allocated size of the dynamic variable to a given size. The size
currently used (*LENGTH) for the dynamic variable is not modified.
If the given size is less than the currently allocated size of the dynamic variable, the statement will be ignored.

The REDUCE statement is used to reduce the allocated memory size. The allocated memory of the dynamic
variable beyond the given size is released immediately (when the statement is executed).
If the size currently used (*LENGTH) for the dynamic variable is greater than the given size, *LENGTH of this

371Copyright © Software AG 2002

System Variable *LENGTH - fieldLarge and Dynamic Variables/Fields

dynamic variable is set to this size. The content of the variable is truncated, but not modified. If the given size is
larger as the currently allocated size of the dynamic variable, the statement will be ignored.

Usage of Dynamic Variables
Assignments with Dynamic Variables
Initialization of Dynamic Variables
String Manipulation with Dynamic Alpha Variables
Logical Condition Criterion - LCC - with Dynamic Variables
Parameter Transfer with Dynamic Variables
Work File Access with Large and Dynamic Variables
DDM Generation and Editing for Varying Length Columns
Accessing Large Database Objects
Performance Aspects with Dynamic Variables

Generally, a dynamic alpha variable may be used wherever an operand of format A or format B is allowed.

Exception:
Dynamic variables are not allowed within DISPLAY, WRITE, PRINT, STACK, INPUT, REINPUT, and SORT
statements. (To DISPLAY, WRITE or PRINT dynamic alpha variables, the variable must be cut into smaller
portions using the SUBSTRING statement.)

Exception 2:
Large and dynamic variables are not supported by the Natural remote procedure call.

The used length (*LENGTH) and the allocated size of dynamic variables are equal to zero until such time that
the variable is first accessed as a target operand. Due to assignments or other manipulation operations, dynamic
variables may be firstly allocated or extended (reallocated) to the exactly size value of the source operand.

The size of a dynamic variable may be extended if it is used as a modifiable operand (target operand) in the
following statements:

destination operand in an assignment (ASSIGN, MOVE)
operand2 in COMPRESS
operand1 in EXAMINE REPLACE
operand4 in SEPARATE
READ WORK FILE
parameter or view field in the INTO clause of SELECT
CALLNAT, PERFORM (except AD=O, or BY VALUE in PDA)
SEND METHOD

Currently, there are the following limits concerning the usage of large variables:

EntireX TCP/IP limit is 4MB
Network limit is 32K
CALL statement parameter size less than 65K per parameter (no limit for the CALL with INTERFACE4
option)

In the following sections the usage of dynamic variables are discussed in more detail with examples..

Assignments with Dynamic Variables

Generally, an assignment is done in the current used length (*LENGTH) of the source operand.
If the destination operand is a dynamic variable, its current allocated size is possibly extended in order to move
the source operand without truncation.

Copyright © Software AG 2002372

Large and Dynamic Variables/FieldsUsage of Dynamic Variables

Example:

#MyDynText1 := operand or
MOVE operand to #MyDynText1
#MyDynText1 is automatically extended until the source operand can be copied

MOVE ALL, MOVE ALL UNTIL with dynamic target operands are defined as follows:
MOVE ALL moves the source operand repeatedly to the target operand until the used length (*LENGTH) of the
target operand is reached. *LENGTH is not modified. If *LENGTH is zero, the statement will be ignored.
MOVE ALL operand1 TO operand2 UNTIL operand3 moves operand1 repeatedly to operand2 until the length
specified in operand3 is reached. If operand3 is greater than *LENGTH(operand2), operand2 is extended and
*LENGTH(operand2) is set to operand3. If operand3 is less than *LENGTH(operand2), the used length is
reduced to operand3. If operand 3 equals *LENGTH(operand2), the behavior is equivalent to MOVE ALL.

Example:

#MyDynText1 := ’ABCDEFGHIJKLMNO’ /* *LENGTH(#MyDynText1) is 15
MOVE ALL ’AB’ TO #MyDynText1 /* content of #MyDynText1 is ’ABABABABABABABA’;
 /* *LENGTH is still 15
MOVE ALL ’CD’ TO #MyDynText1 UNTIL 6 /* content of #MyDynText1 is ’CDCDCD’;
 /* *LENGTH is 6
MOVE ALL ’EF’ TO #MyDynText1 UNTIL 10/* content of #MyDynText1 is ’EFEFEFEFEF’;
 /* *LENGTH is 10

MOVE JUSTIFIED is rejected at compile time if the target operand is a dynamic variable.

MOVE SUBSTR and MOVE TO SUBSTR are allowed. MOVE SUBSTR will lead to runtime error if a
sub-string behind the used length of a dynamic variable (*LENGTH) is referenced. MOVE TO SUBSTR will
lead to runtime error if a sub-string position behind *LENGTH + 1 is referenced, because this would lead to an
undefined gap in the content of the dynamic variable. If the target operand should be extended by MOVE TO
SUBSTR (for example if the second operand is set to *LENGTH+1), the third operand is mandatory.

Example:

/* valid
#op2 := *LENGTH(#MyDynText1)
MOVE SUBSTR (#MyDynText1, #op2) TO operand /* move last character to operand
#op2 := *LENGTH(#MyDynText1) + 1
MOVE operand TO SUBSTR(#MyDynText1, #op2, #len_operand)
 /* concatenate operand to #MyDynText1
/* invalid
#op2 := *LENGTH(#MyDynText1) +1
MOVE SUBSTR (#MyDynText1, #op2, 10) TO operand /* leads to runtime error; undefined sub-string
#op2 := *LENGTH(#MyDynText1 +10)
MOVE operand TO SUBSTR(#MyDynText1, #op2, #len_operand)
 /* leads to runtime error; undefined gap
#op2 := *LENGTH(#MyDynText1) +1
MOVE operand TO SUBSTR(#MyDynText1, #op2) /* leads to runtime error; undefined length

Assignment Compatibility

Example:

#MyDynText1 := #MyStaticVar1
#MyStaticVar1 := #MyDynText2

If the source operand is a static variable, the used length of the dynamic destination operand
(*LENGTH(#MyDynText1)) is set to the format length of the static variable and the source operand is copied in
this length including trailing blanks (format A) or zeros (format B).

373Copyright © Software AG 2002

Assignments with Dynamic VariablesLarge and Dynamic Variables/Fields

If the destination operand is static and the source operand is dynamic, the dynamic variable is copied in its
currently used size. If this size is less than the format length of the static variable, the rest is filled with blanks or
zeros. Otherwise, the value will be truncated. If the currently used size of the dynamic variable is 0, the static
target operand is filled with blanks or zeros.

Copyright © Software AG 2002374

Large and Dynamic Variables/FieldsAssignments with Dynamic Variables

Initialization of Dynamic Variables

Dynamic Variables can be initialized with blanks (alpha) or zeros (binary) up to the currently used length (=
*LENGTH) using the RESET statement. *LENGTH is not modified.

Example:

DEFINE DATA LOCAL
:
#MyDynText1 (A) DYNAMIC
:
END-DEFINE
:
#MyDynText1 := ’short text’
write *LENGTH(#MyDynText1) /* used length is 10
:
RESET #MyDynText1 /* used length is still 10, value is 10 blanks
:

To initialize a dynamic variable with a specified value in a specified size, the MOVE ALL UNTIL statement
may be used.

Example:

:
MOVE ALL ’Y’ TO #MyDynText1 UNTIL 15 /* #MyDynText1 contains 15 ’Y’s, used length is 15
:

String Manipulation with Dynamic Alpha Variables

If a modifiable operand is a dynamic variable, its current allocated size is possibly extended in order to perform
the operation without truncation or an error message. This is valid for the concatenation (COMPRESS) and
separation of dynamic alpha variables (SEPARATE).

Example:

DEFINE DATA LOCAL
 1 #MyDynText1 (A) DYNAMIC
 1 #MyDynText2 (A) DYNAMIC
...
COMPRESS INTO
...
#MyDynText2

#MyDynText2 will be extended in order to compress the source operands.
Note: in case of non-dynamic variables the value may be truncated.

SEPARATE INTO #MyDynText1 #MyDynText2 WITH DELIMITER
#MyDynText1 and #MyDynText2 are possibly extended or reduced to separate the source operand.

EXAMINE #MyDynText1 FOR REPLACE
#MyDyntext1 will possibly be extended or reduced to perform the REPLACE operation successfully.

Note: in case of non-dynamic variables an error message may be returned.

375Copyright © Software AG 2002

Initialization of Dynamic VariablesLarge and Dynamic Variables/Fields

Logical Condition Criterion - LCC - with Dynamic Variables

Generally, a read-only operation (such as LCC) with a dynamic variable is done with its current used size.
Dynamic variables are processed like static variables if they are used in a read-only (non-modifiable) context.

Example:

IF #MyDynText1 = #MyDynText2 OR #MyDynText1 = "**"
IF #MyDynText1 < #MyDynText2 OR #MyDynText1 < "**"
IF #MyDynText1 > #MyDynText2 OR #MyDynText1 > "**"

Also in the case of trailing blanks or leading zeros, dynamic variables will show an equivalent behavior.
For dynamic variables the alpha value ’AA ’ will be equal to ’AA’ and the binary value ’00003031’ is equal to
’3031’. If a comparison result should only be TRUE in case of an exact copy, the used lengths of the dynamic
variables have to be compared in addition. For example, a variable for a small music clip and a variable for the
same clip with a following period of silence at the end could be compared. If one variable is an exactly copy of
the other, their used lengths are also equal.

Example:

#MyDynText1 := ’hello’ /* used length is 5
#MyDynText2 := ’hello ’ /* used length is 10
IF #MyDynText1 = #MyDynText2 /* TRUE
:
IF #MyDynText1 = #MyDynText2
 AND *LENGTH(#MyDynText1) = *LENGTH(#MyDynText2)
 /* FALSE
:

Two dynamic variables are compared position by position from left to right up to the minimum of their used
lengths. The first position where the variables are not equal determines if the first or the second variable is
greater than, less than or equal to the other. The variables are equal if they are equal up to the minimum of their
used lengths and the rest of the longer variable contains only blanks (format A) or zeros (format B).

Example:

#MyDynText1 := ’hello1’ /* used length is 6
#MyDynText2 := ’hello2 ’ /* used length is 10
IF #MyDynText1 #MyDynText2 /* TRUE
: #MyDynText2
:="hallo" IF #MyDynText1> #MyDynText2 /* TRUE
:

Comparison Compatibility

Comparisons between dynamic and static variables are equivalent to comparisons between dynamic variables.
The format length of the static variable is interpreted as its used length.

Copyright © Software AG 2002376

Large and Dynamic Variables/FieldsLogical Condition Criterion - LCC - with Dynamic Variables

Example:

#MyStatText1 := ’hello’ /* format length of MyStatText1 is 20
#MyDynText1 := ’hello’ /* used length is 5
IF #MyStatText1 = #MyDynText1 /* TRUE
:
IF #MyStatText1 > #MyDynText1 /* FALSE

377Copyright © Software AG 2002

Logical Condition Criterion - LCC - with Dynamic VariablesLarge and Dynamic Variables/Fields

Parameter Transfer with Dynamic Variables

Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
Call-by-reference is possible because the value space of a dynamic variable is contiguous. Call-by-value causes
an assignment with the variable definition of the caller as the source operand and the parameter definition as the
destination operand. Call-by-value result causes in addition the movement in the opposite direction
For call-by-reference, both definitions must be DYNAMIC. If only one of them is DYNAMIC, a runtime error
is raised. In case of call-by-value (result) all combinations are possible. The following table illustrates the valid
combinations:.

Call By Reference

 Parameter

Caller Static Dynamic

Static Yes No

Dynamic No Yes

The formats of dynamic variables A or B must match.

Call by Value - Result

 Parameter

Caller Static Dynamic

Static Yes Yes

Dynamic Yes Yes

Note: in case of static/dynamic or dynamic/static definitions a value truncation may occur according to the data
transfer rules of the appropriate assignments.

Copyright © Software AG 2002378

Large and Dynamic Variables/FieldsParameter Transfer with Dynamic Variables

Example 1:

DEFINE DATA LOCAL
 1 #MyText (A) DYNAMIC
:
#MyText := ’123456’ /* extended to 6 bytes
WRITE *LENGTH(#MyText) /* is 6
CALLNAT ’SUB1’ USING #MyText
WRITE *LENGTH(#MyText) /* is 8; allocated size is 8

Subpgm SUB1:
DEFINE DATA PARAMETER
 1 #MyParm (A) DYNAMIC BY VALUE RESULT
:
WRITE *LENGTH(#MyParm) /*is 6; temporary value space of 6 bytes is allocated for #MyParm
#MyParm := ’1234567’ /* extended to 7
#MyParm := ’12345678’ /* allocated size=8 bytes
EXPAND DYNAMIC VARIABLE #MyParam TO 10
WRITE *LENGTH(#MyParm) /* is 8; allocated size is 10
END /* contents of #Myparm is moved (back) to #MyText
 /* used length is 8; #MyText is extended to 8

379Copyright © Software AG 2002

Parameter Transfer with Dynamic VariablesLarge and Dynamic Variables/Fields

Example 2:

DEFINE DATA LOCAL
 1 #MyText (A) DYNAMIC
:
#MyText := ’123456’ /* extended to 6 bytes
WRITE *LENGTH(#MyText) /* is 6
CALLNAT ’SUB2’ USING #MyText
WRITE *LENGTH(#MyText) /* is 8; allocated size is 10 (extended in SUB2)

Subpgm SUB2:
DEFINE DATA PARAMETER
 1 #MyParm (A) DYNAMIC
:
WRITE *LENGTH(#MyParm) /* is 6
#MyParm := ’1234567’ /* used length is 7
#MyParm := ’12345678’ /* extended to 8 bytes
EXPAND DYNAMIC VARIABLE #MyParm TO 10
WRITE *LENGTH(#MyParm) /* is 8; allocated size is 10
END

Copyright © Software AG 2002380

Large and Dynamic Variables/FieldsParameter Transfer with Dynamic Variables

CALL 3GL Program

Dynamic and large variables can sensibly be used with the CALL statement when the option INTERFACE4 is
used. The usage of this option leads to an interface to the 3GL program with a different parameter structure. This
usage requires some minor changes in the 3GL program, but provides the following significant benefits as
compared with the older FINFO structure. For further information on the FINFO structure, see the Call
Interface4 statement.

no limitation on the number of passed parameters (former limit 40)
no limitation on the parameter’s data size (former limit 64K per parameter)
full parameter information can be passed to the 3GL program including array information.
Exported functions are provided which allow secure access to the parameter data (formerly you had to take
care not to overwrite memory inside of Natural)

Before calling a 3GL program with dynamic parameters, it is important to ensure that the necessary buffer size is
allocated. This can be done explicitly with the EXPAND statement.
If an initialized buffer is required, the dynamic variable can be set to the initial value and to the necessary size by
using the MOVE ALL UNTIL statement. Natural provides a set of functions that allow the 3GL program to
obtain information about the dynamic parameter and to modify the length when parameter data is passed back.

Example:

MOVE ALL ’ ’ TO #MyDynText1 UNTIL 10000 /* a buffer of length 10000 is allocated
 /* #MyDynText1 is initialized with blanks
 /* *LENGTH is set is set to 10000
CALL INTERFACE4 #3GLprog USING #MyDynText1
write *LENGTH(#MyDynText1) /* used length may have changed in the 3GL program
:

For a more detailed description refer to the CALL statement documentation in the Statements Manual.

381Copyright © Software AG 2002

Parameter Transfer with Dynamic VariablesLarge and Dynamic Variables/Fields

Work File Access with Large and Dynamic Variables

Large and Dynamic Variables can be written into work files or read from work files using the two work file
types PORTABLE and UNFORMATTED. For these types there are no size restrictions for large/dynamic
variables.

The other work file types (ASCII, ASCII-COMPRESSED, ENTIRECONNECTION, SAG and TRANSFER)
cannot handle dynamic variables and will produce an error. Large variables for these work file types pose no
problem unless the maximum field/record length is exceeded (field length 255 for ENTIRECONNECTION and
TRANSFER, record length 32767 for the others).

For the work file type PORTABLE, the field information is stored within the work file. The dynamic variables
are resized during READ if the field size in the record is different from the current size.

The work file type UNFORMATTED can be used, for example, to read a video from a database and store it in a
file directly playable by other utilities. In the WRITE WORK statement, the fields are written to the file with
their byte length. All data types (DYNAMIC or not) are treated the same. No structural information is inserted.
Note that Natural uses a buffering mechanism, so you can expect the data to be completely written only after a
CLOSE WORK. This is especially important if the file is to be processed with another utility while Natural is
running.

With the READ WORK statement, fields of fixed length are read with their whole length. If the end-of-file is
reached, the rest of the current field is filled with blanks. The following fields are unchanged.
In case of DYNAMIC data types, the complete rest of the file is read unless it exceeds 1 GB. If the end of file is
reached, the remaining fields (variables) are kept unchanged (normal Natural behavior).

DDM Generation and Editing for Varying Length Columns

Depending on the data types, the related database format A or format B is generated. The Natural length is not
set to a defined value for a varying length column in the DBMS. In the case of varying length columns, the
original data type (and the maximum length, if defined) of the DBMS will be documented in the Remark
column. The keyword DYNAMIC is displayed at the length field position.

For all varying length columns, an LINDICATOR field L@<column-name> will be generated. For the
databases’ data type VARCHAR, an LINDICATOR field with format/length I2 will be generated. For large data
types (see list below) the format/length will be I4.

In the context of database access the LINDICATOR handling offers the possibility to get the size of the field to
be read or to set the size of the field to be written independent from a defined buffer length (or from *LENGTH).
Usually, after a retrieval function, *LENGTH will be set to the corresponding length indicator value.

Copyright © Software AG 2002382

Large and Dynamic Variables/FieldsWork File Access with Large and Dynamic Variables

Example DDM:

T L Name F Leng S D Remark
 :
 1 L@ PICTURE1 I 4 /* length indicator
 1 PICTURE1 B DYNAMIC IMAGE
 1 N@PICTURE1 I 2 /* NULL indicator
 1 L@TEXT1 I 4 /* length indicator
 1 TEXT1 A DYNAMIC TEXT
 1 N@TEXT1 I 2 /* NULL indicator
 1 L@DESCRIPTION I 2 /* length indicator
 1 DESCRIPTION A DYNAMIC VARCHAR(1000)
 :
 :
~~~~~~~~~~~~~~~~~~~~~~Extended Attributes~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/* concerning PICTURE1
 Header               :    ---
 Edit Mask            :    ---
 Remarks              :   IMAGE
 Length               :   DYNAMIC

The generated formats are varying length formats. The Natural programmer has the possibility to change the
definition from DYNAMIC to a fixed length definition (extended field editing) and can change, for example, the
corresponding DDM field definition for VARCHAR data types to a multiple value field (old generation).

Example:

T  L  Name                  F   Leng          S   D   Remark
   :
   1  L@ PICTURE1           I   4                                         /* length indicator
   1  PICTURE1              B   1000000000            IMAGE
   1  N@PICTURE1            I   2                                         /* NULL indicator
   1  L@TEXT1               I   4                                         /* length indicator
   1  TEXT1                 A   5000                  TEXT
   1  N@TEXT1               I   2                                         /* NULL indicator
   1  L@DESCRIPTION         I   2                                         /* length indicator
M  1  DESCRIPTION           A   100                   VARCHAR(1000) 
     :
     :
~~~~~~~~~~~~~~~~~~~~Extended Attributes~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/* concerning PICTURE1
 Header : ---
 Edit Mask : ---
 Remarks : IMAGE
 Length : ---

Accessing Large Database Objects

To access a database with large objects (CLOBs or BLOBs) a DDM with corresponding large alpha or binary
fields is required. If a fixed length is defined and if the database large object does not fit into this field, the large
object is truncated. If the programmer does not know the definitive length of the database object, it will make
sense to work with dynamic fields. As many reallocations as necessary are done to hold the object. No truncation
is performed.

383Copyright © Software AG 2002

Accessing Large Database ObjectsLarge and Dynamic Variables/Fields

Example Program:

DEFINE DATA LOCAL
:
1 person VIEW OF xyz-person
 2 nachname
 2 vorname_1
 2 L@PICTURE1 /* I4 length indicator for PICTURE1
 2 PICTURE1 /* defined as dynamic in the DDM
 2 TEXT1 /* defined as non-dynamic in the DDM
:
END-DEFINE
:
SELECT * INTO VIEW person FROM xyz-person /* PICTURE1 will be read completely
 WHERE nachname = ’SMITH’ /* TEXT1 will be truncated to fixed length 5000
:
 WRITE ’length of PICTURE1: ’ L@PICTURE1 /* the L-INDICATOR will contain the length
 : /* of PICTURE1 (= *LENGTH(PICTURE1)
 /* do something with PICTURE1 and TEXT1
:
 L@PICTURE1 := 100000
 INSERT INTO xyz-person (*) VALUES (VIEW person) /* only the first 100000 Bytes of PICTURE1
 : /* are inserted
:
END-SELECT

If a format-length definition is omitted in the view, these are taken from the DDM.
In reporting mode; it is now possible to specify any length, if the corresponding DDM field is defined as
DYNAMIC. The dynamic field will be mapped to a field with a fixed buffer length. The other way round is not
possible.

DDM
format/length definition

VIEW
format / length definition

(An) - valid

(An) valid

 (Am) only valid in reporting mode

(A) DYNAMIC invalid

(A) DYNAMIC - valid

(A) DYNAMIC valid

(An) only valid in reporting mode

(Am / i : j) only valid in reporting mode

 (equivalent for format B variables)

Copyright © Software AG 2002384

Large and Dynamic Variables/FieldsAccessing Large Database Objects

Parameter with LINDICATOR Clause in SQL Statements

If the LINDICATOR field is defined as I2 field, the SQL data type VARCHAR is used for sending or receiving
the corresponding column. IF the LINDICATOR host variable is specified as I4, a large object data type
(CLOB/BLOB) is used.

If the field is defined as DYNAMIC, the column is read in an internal loop up to its real length. The
LINDICATOR field and *LENGTH are set to this length. In case of fixed length field, the column is read up to
the defined length. In both cases, the field is written up to the value defined in the LINDICATOR field.

Performance Aspects with Dynamic Variables

EXPAND and REDUCE

The amount of the allocated memory of a dynamic variable may be reduced to a specified size using the
REDUCE DYNAMIC VARIABLE statement. In order to (re)allocate a variable to a specified size, the
EXPAND statement can be used.
(If the variable should be initialized use the MOVE ALL UNTIL statement.)

Example:

DEFINE DATA LOCAL
:
#MyDynText1 (A) DYNAMIC
len (I4)
:
END-DEFINE

#MyDynText1 := ’a’ /* used length is 1, value is ’a’; allocated size is still 1

EXPAND DYNAMIC VARIABLE #MyDynText1 TO 100
 /* used length is still 1, value is ’a’; allocated size is 100

CALLNAT #subprog USING #MyDynText1
write *LENGTH(#MyDynText1) /* used length and allocated size may have changed in the subprogram

#len := *LENGTH(#MyDynText1)
REDUCE DYNAMIC VARIABLE #MyDynText1 TO #len
 /* if allocated size is greater than used length, the unused memory is released
:
REDUCE DYNAMIC VARIABLE #MyDynText1 TO 0
 /* free allocated memory for dynamic variable
END

Rules:

Use dynamic operands where it makes sense.
Use EXPAND if upper limit of memory usage is known.
Use REDUCE if the dynamic operand will no longer be needed.

385Copyright © Software AG 2002

Performance Aspects with Dynamic VariablesLarge and Dynamic Variables/Fields

Introduction to Event-Driven Programming
The following topics are covered below:

What is an Event-Driven Application?
GUI Development Environments
GUI Design Tips
Tasks Involved in Creating an Application
Tutorial - Overview
Creating a Dialog
Assigning Attributes to the Dialog
Creating Dialog Elements Inside the Dialog
Assigning Attributes to the Dialog Elements
Creating the Application’s Local Data Area
Attaching Event Handler Code to the Dialog Element
Checking, Stowing and Running the Application
Basic Terminology

For further information on Event-driven Programming see Event-Driven Programming Techniques.

What is an Event-Driven Application?
Program-Driven Applications
Event-Driven Applications
What is Happening Here?
Writing Event-Driven Code
Components of an Event-Driven Application

Event-driven applications represent a new approach to development in addition to the program-driven approach.
Natural offers you both. Event-driven programming allows the application to be driven by input received through
the graphical user interface.

In program-driven applications, the application controls the portions of code that execute - not an event.
Execution starts with the first line of executable code and follows a defined pathway through the application,
calling additional programs as instructed in the predetermined sequence.

In event-driven programming, the user’s action or a system event triggers the code attached to that event. Thus,
the order in which your code executes depends on which events occur, which in turn depends on what the user
does. This is the essence of graphical user interfaces and event-driven programming: The user is in charge, and
the code responds. Even though event-driven programming is possible in character-oriented interfaces, it is more
common in graphical user interfaces.

Because you cannot predict what the user will do, your code must make a few assumptions when it executes. For
example, the application might assume that the user added text to an edit-area control before pressing the OK
button.

When you must make assumptions, you should try to structure your application so these assumptions are always
valid. For example, to ensure the user added text, you can disable the button and enable it only when the change
event occurs for the edit-area control.

Your code can trigger additional events as it performs certain operations. For example, moving the slider in a
scroll-bar control triggers the change event.

Copyright © Software AG 2002386

Introduction to Event-Driven ProgrammingIntroduction to Event-Driven Programming

The following diagrams illustrate the difference between program-driven and event-driven applications.

Program-Driven Applications

In typical program-driven applications, the following sequence of steps applies:

1. The program sends a screen to the terminal.
2. The user reacts by filling in the data fields.
3. The user then presses ENTER or a function key.
4. The program then decides whether or not the user’s entries are valid.

If the data are valid, it processes the results until it reaches an END statement.

Event-Driven Applications

In typical event-driven applications, the following sequence of steps applies:

1. The user requests an action on the screen.
2. The event handler code reacts in the background according to the context.
3. If certain conditions are fulfilled, the executed event handler code triggers other Natural code (here: a

subroutine) or returns control to the screen.

387Copyright © Software AG 2002

Program-Driven ApplicationsIntroduction to Event-Driven Programming

In the program-driven approach, the user interacts with the code through the ENTER and function keys, the user
of an event-driven application triggers specific pieces of code (event handlers). Typically, an event-driven
application is not executing any code when waiting for user input; in the same situation, the program-driven
application might be processing an INPUT statement.

What is Happening Here?

Graphical user interface programs require you to write programs that react to isolated events initiated by the user.

An event is an action recognized by a dialog or a dialog element. Event-driven applications execute code in
response to an event. Each dialog or dialog element has a predefined set of events. If one of these events occurs,
Natural invokes the code in the associated event handler.

You decide if and how the dialogs and dialog elements in your application respond to a particular event. When
you want a program to respond to an event, you write event code for that event.

Writing Event-Driven Code

For each dialog or dialog element you create, Natural predefines a set of events to which your program (event
handler) can respond. It is easy to respond to events: dialogs and dialog elements have the built-in ability to
recognize user actions and execute the code associated with them.

You do not have to write code for all events. When you do want a dialog object to respond to an event, you write
event code that Natural executes in response to that event.

In a typical event-driven application, the following series of actions takes place:

A dialog or dialog element recognizes an action as an event. The action can be caused by the user (such as a
click or keystroke).
If there is event code corresponding to the event, it is executed.
The application waits for the next event.

The event code you write to respond to events can perform calculations, get input, and manipulate parts of the
interface. Using Natural, you manipulate dialogs or dialog elements by changing the values of their attribute
settings.

Note:
Avoid creating cascading events in your code caused by events occurring repeatedly. For example, when the user
drags the slider in the scroll-bar control, the current SLIDER attribute setting is automatically changed and the
change event is triggered. If the code attached to the change event also changes the current SLIDER attribute
setting, then the change event is triggered again, the current SLIDER attribute setting is again adjusted, the
change event is once again triggered, and so on. At this rate, you quickly run out of memory.

Components of an Event-Driven Application

Overview

Copyright © Software AG 2002388

Introduction to Event-Driven ProgrammingWhat is Happening Here?

Dialogs

The dialog is the central Natural object in an event-driven application. An event-driven application is started by
running or executing the base dialog. This may open other dependent dialogs when the OPEN DIALOG
statement is specified. As opposed to program-driven applications, these dialogs are usually modeless, that is, all
open dialogs can be processed concurrently by the end user. The application terminates when the base dialog is
closed.

You create a dialog with the dialog editor. Just like the map editor, the dialog editor assembles a Natural object
from the specification of the dialog window and its dialog elements, the global data area (GDA), the local data
areas (LDAs), the parameter data areas (PDAs), the subroutines and the specified event handler sections.

At runtime of the dialog, there is a difference between the runtime instance identified by the system variable
*DIALOG-ID and the GUI instance (handle) of the dialog window (the default handle name is
#DLG$WINDOW).

Whenever you want to work with more than one dialog in your application, you must decide how the base dialog
window relates to the other dialogs. First you have to decide whether the application should be MDI (Multiple
Document Interface) or not.

If you have opted for an MDI application, the base dialog must be of the type "MDI frame window" and the
dependent dialogs must be of the type "MDI child window" and "Standard window".

If you have opted for non-MDI, the application may contain only dialogs of the type "Standard window".

Dialogs of type "Standard window" can have the styles Popup, Modal or Dialog Box.

Dialog Elements

Almost all dialog elements are graphical elements inside a dialog that allow the end user to interact with the
event-driven application. After a dialog has been opened with the dialog editor and its attributes have been set
(see below), the programmer will go on to "draw" the dialog elements inside the window; usually, this comprises
a menu control, possibly a toolbar, and other elements, such as push-button controls, input-field controls.

389Copyright © Software AG 2002

Components of an Event-Driven ApplicationIntroduction to Event-Driven Programming

"Drawing" a dialog element means that you select the type of dialog element from the dialog editor’s menu or
toolbar, and use the mouse to place it at the desired location. It is also possible to define a grid where the dialog
elements can be placed more conveniently by aligning them to the grid.

Attributes

Attributes are the properties of dialogs and dialog elements. After creating a dialog or dialog element, you
double-click with the mouse on it and the window with the corresponding attributes appears. You can then set
the attributes to a value; if not, they remain at the system default value. The attributes window also contains a
push-button control that opens up the event handler window.

Event Handlers

The event handlers represent the Natural code that is triggered when an event occurs. A click event occurs, for
example, when the end user clicks on a push-button control. Inside the event handler window, you must first
select the type of event from the list of events available for the dialog or dialog element (the one whose attributes
have just been set). Then, the code window is enabled and Natural code can be entered.

Data Areas - Global, Local, Parameter

A global data area (GDA) is used to share data fields between Natural objects within the application. One
GDA per application may be specified.
A local data area (LDA) contains the data fields private to the dialog.
A parameter data area (PDA) is always present in dialogs. It is used to pass parameters to a dialog in the
OPEN DIALOG or SEND EVENT statements. In these statements, parameters are passed either by
specifying their name (WITH clause), or by listing parameters one after the other. You can use the dialog
editor PDA window to type in your PDA in free-form style or to include PDAs defined externally.

Inline Subroutines

An inline subroutine defines standard code to be used for a frequently needed task called by a number of event
handlers. You access an inline subroutine window via the "Inline Subroutines" push-button control in the dialog
window.

GUI Development Environments
To understand the functions of Natural, you must first understand the environment in which it runs.

A graphical user interface (GUI) environment differs from a traditional mainframe environment in at least two
important ways:

Applications share screen space. A Natural application runs in a group of one or more windows and rarely
occupies the full screen.
Applications share computing time. An application cannot run continually, or if it does, it must run in the
background.

Using Natural, your applications share computing time and other resources (such as the clipboard). An
event-driven application consists of dialogs and dialog elements that wait for a particular event to happen.

While your application is waiting to execute an event, it remains on the desktop (unless the user closes the
application). In the meantime, the user can run other applications, resize windows, or customize system settings
(such as color). However, your code is always present, ready to be activated when the user returns to your
application.

Copyright © Software AG 2002390

Introduction to Event-Driven ProgrammingGUI Development Environments

GUI Design Tips
Do Your Research
Screen Design
Menu Design
Color Usage
Consistency Check

Designing the screens for a GUI application requires different knowledge than designing the 3270 screens for a
mainframe. Why is it different?

It is different, because GUI applications put the users in control; these applications are non-modal and
unstructured. The users choose the order in which they access windows, and fields within the windows.
Traditional database applications often require the users to perform operations in a specific order; these
applications are form-oriented and structured.

Designing a GUI screen is also different, because the GUI interface has different capabilities than a traditional
mainframe interface. You can design windows that incorporate dialog elements, such as push-button controls and
list-box controls. As you design your GUI windows, which are called dialogs in event-driven Natural, you define
the font type and size of the text, the background and foreground colors, and the size of each window.

The following sections provide some tips for effective GUI design.

391Copyright © Software AG 2002

GUI Design TipsIntroduction to Event-Driven Programming

Do Your Research

Spend a few hours with your users before prototyping.

A couple of sessions with your users to iron out their needs, likes, and dislikes is enough to give you to a good
basis for beginning your design.

Take some ideas from existing GUI designs.
Save time by not re-inventing the GUI. Try out other GUIs with an eye for what works and what does not.
Consistency within GUIs helps users learn to use new applications, improves efficiency, and reduces
training costs. Get user feedback on existing GUI applications - listen to their likes and dislikes rather than
develop a prototype that replicates the weaknesses of poor GUI design.

Develop your ideas on paper before spending time developing the application online.
It is faster for you to run through a number of screen design options for your main windows on paper before
spending time to create multiple prototypes online. It is quicker than coding and you do not become
attached to poor designs.

If you include your users in the development process, they can quickly comment about their needs and likes
before the application is installed in the system. Try to use a paper prototype before reaching for the online
development tool.

Screen Design

Design multiple windows for related subject matter.
Unlike designing for 3270 monitors, where you try to maximize the number of fields per screen, GUI
screens are better designed using subwindows. You can, for example, have the essential fields in the main
window, and all optional or supplemental information stored in one or more subwindows. Subwindows can
include choices, such as drop-down lists, for the user to browse through if they do not know the information
to input into the main window. Messages and field-dependent information are more effectively presented in
supplemental windows than in the main window.

Design clear, uncluttered windows.
Avoid cluttering your windows with more than three colors, multiple graphics, and a variety of shapes.
Balance your objects on the screen with lots of white space so users are not overwhelmed by variety and
distracted by the presentation. Try to keep shapes and objects to a minimum and the number of colors low.

Design accessible, not overwhelming, windows.
Multiple fonts, font sizes, font types or families, and color schemes can overwhelm your users, making your
application seem inaccessible to them. Use a maximum of three fonts, font sizes, and font types per
window. Avoid using italics and serif fonts because they often break up on the screen. Use color sparingly.
Neutral colors are kindest to your users eyes. Though vibrant reds and greens are very eye-catching,
remember that your users spend a lot of their day working in the windows you design.

Design for both keyboard and mouse use.
Some users prefer using the keyboard and memorize the short cut commands, while other users are more
comfortable using the mouse. Each action should be accessible by both the mouse and the keyboard.

Design the windows according to your users’ needs.
Though it is tempting to create fabulous-looking screens with lots of functionality, if your users do not use
it, it is of no value. Remember that you are designing the application for your users to get a job done, not for
you to experiment with all the functionality you have available. First find out what your users need, then
tailor your design to meet their needs. You design screens with different purposes in different ways. If you
want to prompt the user, you use a conversational style; if you want the user to enter values from a form,
you use a data-entry style.

Copyright © Software AG 2002392

Introduction to Event-Driven ProgrammingDo Your Research

Conversational Screens

Design conversational screens with field prompts.
In a conversational-based style, users enter data from a conversation (travel reservations, for example).
Conversational-based styles, in which the user relies on the screen for prompting, can be rich with labels,
hints, instructions, and even questions for the users to ask their clients.

Data-Entry Screens

Design data-entry screens with terse labels.
In a form-based style, users enter data from a form. Each line on the input screen must match a line on the
form - and the lines must be in the same order. To maintain a line-for-line correspondence, you can
abbreviate labels. Headings and instructions are kept to a minimum. The only purpose of labels is to help
users find their places again after interruptions.

Menu Design

The following three criteria are recommended for designing menus.

Organize menus using the conventions defined by the operating system on which your users run the
application.
Microsoft Windows, for example, recommends certain menus ("File", "Edit", and "View", for example),
options on menus ("Cut", "Copy", and "Paste" on the "Edit" menu, for example), and a particular order of
the menus on the menu bar (Help always appears at the right margin, for example).

Arrange menus by frequency of use and decide this information through observation or usability testing.
Anticipate whether usage changes as users become more expert. Watch that this does not violate
conventions established for the operating system.

List menu items alphabetically.
Remember to follow the operating-system conventions and user recommendations for frequency of using
menu items.

393Copyright © Software AG 2002

Menu DesignIntroduction to Event-Driven Programming

Color Usage

Be as conservative as possible with color.
Humans can remember the meaning of no more than five colors at a time, plus or minus two.

Use color as an additional signal, not as the primary signal.
Using bright red text to warn a user is not enough; add a warning tone. Eight percent of all males are
red-green color-blind and may not notice the red text.

On charts, do not use colors without adding a secondary key (for example, a broken or solid underline).
Users with black and white monitors must be able to understand the key without the benefit of color. Also,
most users do not have color printers.

Consistency Check

Be consistent throughout the application.
Do not change fonts, colors, or shapes for related subjects. For example, design all the OK buttons in an
application with the same shape, size, color, and font. If related objects are presented in different ways,
users cannot use the visual clues, taking them longer to become comfortable with the application. Present
similar actions in a similar way, using the same font, color, and size for related buttons.

Adopt a naming convention (and stick with it throughout the application).
While traditional programs tend to have one large program you modify for a name change, object-oriented
programs have numerous pieces of event code that you must edit individually every time you make a name
change. When you design GUI applications, you must be much more rigorous about sticking to naming
conventions. This avoids a lot of cleaning up time later.

Copyright © Software AG 2002394

Introduction to Event-Driven ProgrammingColor Usage

Tasks Involved in Creating an Application
There are a number of main tasks you perform to create an application in event-driven Natural. The order in
which they are explained in this section is the typical order in which you perform them. However, this sequence
is not inflexible. For example, you may very well test a dialog several times in the process of designing it, and
you will no doubt save your work more often during the development process.

Decide whether your application is Multiple Document Interface or Single Document Interface.
Create one or more dialogs.
Set the attributes of the dialog(s).
Create and place dialog elements in the dialog(s).
Set the attributes of the dialog elements.
Define the tab order in each of the dialogs (from the menu, choose "Dialog > Control Sequence").
Save the dialog(s) to a name.
Define the global data area.
Define the local data area(s).
Write event handler code for the dialog(s).
Write inline subroutines for the dialog(s).
Write event handler code for the dialog elements.
Stow the dialog(s).
Test (check and run) the dialog(s).
Execute the application.

The following short tutorial introduces you to the most frequently performed tasks.

395Copyright © Software AG 2002

Tasks Involved in Creating an ApplicationIntroduction to Event-Driven Programming

Tutorial - Overview
This section is a simple tutorial that demonstrates how to add the components of an event-driven application one
after the other. The tutorial describes how to develop a small sample application consisting of one dialog. The
application you will create is a degressive depreciation calculator.

You can use this calculator, for example, to find out the value of your car by entering how much the car was
worth when you bought it, how many years you have owned it, and the percentage by which the value of the car
decreases each year.

You can save your application at any stage, allowing you to interrupt the tutorial and continue at a later time
where you left.

 To develop the sample application

1. Create a new dialog (represented by a window).
2. Assign the attributes to your dialog (decide the window’s settings).
3. Create the dialog elements in the dialog (decide how the user can interact).
4. Assign the attributes to your dialog elements (decide attribute settings).
5. Create the application’s local data area (define the variables that allow the event handler to use the end

user’s numeric input).
6. Attach event handler code to the dialog element (decide what happens at runtime when the user interacts).
7. Check, stow and run the application.

Apart from creating the local data area, this is the minimal number of steps required to create any event-driven
application.

Copyright © Software AG 2002396

Introduction to Event-Driven ProgrammingTutorial - Overview

Creating a Dialog
 To create a new Dialog

1. Invoke Natural.
2. From the Natural menu, select "Object > New > Dialog".

The Natural window displays the dialog editor’s menu bar and toolbar. It displays an editing window called
"Untitled1-Dialog". You can resize this editing window. The editing window contains the new dialog window,
titled "(Untitled)". You can also resize this new dialog window, or use the editing window’s scroll bars.

397Copyright © Software AG 2002

Creating a DialogIntroduction to Event-Driven Programming

Assigning Attributes to the Dialog
 To assign attributes to the dialog

1. Double-click inside the dialog window.
The "Dialog Attributes" window appears.

2. With the cursor in the "String" field, type in the new dialog window’s title: "Degressive Depreciation".
3. Open the "Background" selection box by clicking on the down arrow.

A list with predefined colors drops down.
4. Mark the desired color, for example "Gray".
5. Choose OK.

The attributes window closes.
You have set the attribute STRING to the value "Degressive Depreciation" and the attribute
BACKGROUND-COLOUR-NAME to the value of your desired color, for example GRAY.

Copyright © Software AG 2002398

Introduction to Event-Driven ProgrammingAssigning Attributes to the Dialog

Creating Dialog Elements Inside the Dialog
 To create the dialog elements inside the dialog

1. From the menu bar, select "Tools > Options...".
The "Options" dialog box appears. Choose the "Dialog Editor" tab.

2. Choose "Lines".
This decides the way your grid will be displayed.

3. Choose OK to confirm the change.
The grid now helps you position and align the dialog elements.

4. To display the grid from the "Options" dialog, check the ’display grid’ option on the "Dialog Editor > tab
and choose OK to confirm the change.

5. From the menu bar, select "Insert > Text constant", or click on the toolbar button representing a
text-constant control.

6. Move the cursor to the upper left corner of the dialog window.
Ensure that the Editor window’s status bar displays an x and a y value of less than 50. Note that at this time,
the text-constant control’s width and height has an undefined value.

7. Click to fix the text-constant control’s position.
A grey rectangle representing the dialog element appears, surrounded by small black squares. At the same
time, the status bar indicates that "#TC-1" is selected.

8. Point to one of the small black squares.
The cursor shape now indicates the direction in which you can resize the text-constant control.

9. Resize "#TC-1" to a width of about 200.
10. From the menu bar, select "Edit > Copy" followed by "Edit >Paste" and a new text-constant control

"#TC-2" is created on top of "#TC-1". Move the new text-constant control to a position below the first one
by clicking and dragging via the mouse or via the keyboard arrow keys with the <SHIFT> held down.

11. Create another three text-constant controls below (in the same way).
12. Create three input-field controls in the upper right corner of the dialog window (by creating the first and

duplicating it, as above). These input-field controls should have a height of 36. Align them horizontally
with respect to each other and vertically with respect to the upper three text-constant controls.

13. Create a push-button control below the three input-field controls and align it.
14. Create a text-constant control below the push-button control and align it.
15. Align the whole layout until you get a harmonious, well-balanced picture.

399Copyright © Software AG 2002

Creating Dialog Elements Inside the DialogIntroduction to Event-Driven Programming

Your dialog could now look like this:

Copyright © Software AG 2002400

Introduction to Event-Driven ProgrammingCreating Dialog Elements Inside the Dialog

Assigning Attributes to the Dialog Elements
 To assign attributes to the dialog elements

1. Double-click on the text-constant control "#TC-1".
The corresponding attributes window appears.

2. In the "String" entry, type in the text string to be displayed: Initial value.
3. Choose OK or press ENTER.

The attributes window closes.
4. Set the following text strings for the four text-constant controls below: Percentage Applicable, Number of

Years, Degressive Depreciation, Depreciated Value.
5. From the three input-field controls, remove any text string
6. Set the following text string for the push-button control: "Calculate..."
7. From the last text-constant control, remove any text string.

It will be used for output purposes.

Your dialog should now look like this:

401Copyright © Software AG 2002

Assigning Attributes to the Dialog ElementsIntroduction to Event-Driven Programming

Creating the Application’s Local Data Area
The local data area in this application defines the application’s linked variables. These linked variables receive
the numeric values that the end user has entered in the input-field controls. The variables and their values are
used in the calculation of the push-button control’s click event handler code.

 To prepare the creation of your local data area, your input-field controls must use
linked variables

1. Double-click on the first input-field control "#IF-1".
The corresponding attributes window appears.

2. Click on the "..." push-button to the right of the "String" entry.
The "Source for #IF-1.STRING" dialog box appears.

3. In the "Attribute Source" group frame, click (and enable) the "Linked variable" radio button
4. In the "Variable Name" entry, enter: #INITIAL-VALUE.
5. Choose OK twice to leave both the "Source for #IF-1.STRING" dialog box and the attributes window.
6. Set the following linked variable names for the remaining two input-field controls: #PERC-APPLIC,

#YEAR-NUM.

 To create the application’s local data area

1. From the menu bar, select "Dialog > Local data area...".
The "Dialog Local Data Area" definition section appears.

2. Define your local data as follows:
1 #INITIAL-VALUE (N6.2)
1 #PERC-APPLIC (N2.1)
1 #YEAR-NUM (N2)

3. Choose OK.

Natural will now be able to process the input data.

Attaching Event Handler Code to the Dialog Element
 To attach event handler code

1. Select the push-button control labelled "Calculate...".
2. From the menu bar, select "Control > Event Handlers..." The corresponding Event handler definition section

appears.
The "Click" Event is preselected: when the end user clicks on this push-button control, the specified Natural
code will be triggered.

3. In the event handler editing area, enter the following Natural code in free form:
#RESULT:= #INITIAL-VALUE * (((100 - #PERC-APPLIC)
/ 100) ** #YEAR-NUM)
MOVE EDITED #RESULT (EM=Z(5)9.99) TO #TC-6.STRING

4. Choose OK to close the editing area, and choose OK again to close the attributes window.

Copyright © Software AG 2002402

Introduction to Event-Driven ProgrammingCreating the Application’s Local Data Area

Checking, Stowing and Running the Application
 To check the application for syntax errors

1. From the menu bar, select "Object > Check".
A dialog box comes up with a Natural error: a variable needs to be declared.

2. In the dialog box, select the "Edit" push button.
The dialog’s code is displayed, the cursor pointing to the error.

3. Select "Cancel".
4. Select "Dialog > Local data area"
5. Add the definition "1 #RESULT (N6.2)".
6. Select OK.
7. Check your application again.

The Information message box should now confirm that the check was successful.

 To stow your application

1. From the menu bar, select "Object > Stow".
The "Stow Dialog As" dialog box appears.

2. Enter the name "Degrdep".
3. From the "Libraries" list box, select the library where you want the dialog to be stowed.
4. Choose OK.

The Information message box now confirms that the dialog was stowed successfully.

 To test your application

From the menu bar, select "Object > Run".

403Copyright © Software AG 2002

Checking, Stowing and Running the ApplicationIntroduction to Event-Driven Programming

Basic Terminology
Event-driven Natural uses the following basic terminology:

Attribute

A property of a dialog or a dialog element which can assume specific values. Example: If the
HAS-STATUS-BAR attribute is set to TRUE for a dialog, then the dialog contains a status bar. The following
operations may be made on attributes:

Operation Result

Query
In event handler code, you can query an attribute’s value at runtime.
Example:
#L:= #DLG$WINDOW.HAS-STATUS-BAR

Set

In event handler code, you can set an attribute to a value in
the global attribute list before you create a dialog element dynamically.
Example:
#PUSH.STYLE:= ’O’
PROCESS GUI ACTION ADD WITH #W PUSHBUTTON #PUSH

Modify

In event-handler code, you can modify an attribute value of an
existing dialog element at runtime.
Example:
#PUSH.STYLE:= ’C’

Base Dialog

This is the main dialog of an application. It is started from the command line or via the object list. When this
dialog is closed, all other dialogs of the application are closed as well.

Control

A type of dialog element. Examples: edit-area control, push-button control, list-box control.

Dialog

A Natural object similar to a map or a program that represents a window in an event-driven application, plus all
event handlers and attributes directly attached to the window. It can be a window, a modal window, a dialog box,
an MDI child window, and an MDI frame window. The window as such is identified by its handle, the whole
dialog is represented by the value of the system variable *DIALOG-ID.

Dialog Box

A special kind of dialog that is exclusively processed in an application. While this dialog is active, all other
dialogs of the application are disabled and do not accept any user input. If a dialog invokes a dialog box with an
OPEN DIALOG statement, the dialog returns from the OPEN DIALOG statement only after the dialog box is
closed. This allows the application to return parameters from the dialog box to the dialog.

Copyright © Software AG 2002404

Introduction to Event-Driven ProgrammingBasic Terminology

Dialog Editor

The Natural editor with which you create and maintain dialogs.

Dialog Element

Dialog elements are (in most cases) graphical elements inside a window that enable the end user to interact with
the event-driven application. After a dialog has been created, and its attributes have been set, the programmer
places the dialog elements inside the window; usually, this comprises a menu control, possibly a toolbar, and
other elements, such as push-button controls and input-field controls. There are two types of elements: controls
and items.

Event

Occurs when a user interacts with a dialog element. An event may also be sent from within a piece of code
(user-defined event). Example: a click event occurs when the user mouse-clicks on a push-button control for
which a piece of click event handler code has been specified. The system variable *EVENT contains the event
name.

Event Handler

Programming code that is connected with a dialog element, and is triggered when a particular type of event
occurs.

Handle

Identifies a dialog element in code and is stored in handle variables. Example: #PB-1.

Item

A type of dialog element that is part of a control. Example: selection-box item, which is part of a selection-box
control.

MDI - Multiple Document Interface

Allows an application to manage several different documents or several views of the same document within the
main application window (MDI frame window). These views or documents are displayed in separate MDI child
windows.

MDI Child Window

Displays a view of a document within the MDI frame window of an MDI application.

MDI Frame Window

The parent window to all other child (document) windows in an MDI application.

Modal Window

Similar to a dialog box, except that if a dialog invokes a modal window with an OPEN DIALOG statement, the
dialog returns from the OPEN DIALOG statement immediately after the modal window has completed opening.

SDI - Single Document Interface

As opposed to MDI applications, SDI applications do not have an MDI frame window that contains the
document windows. Only a single view of a single document is displayed.

405Copyright © Software AG 2002

Basic TerminologyIntroduction to Event-Driven Programming

Popup

A dialog with style "Popup" is modeless and can be moved anywhere on the desktop.

Window

The basic type of window.

Copyright © Software AG 2002406

Introduction to Event-Driven ProgrammingBasic Terminology

Event-Driven Programming Techniques
This chapter addresses the more experienced GUI programmer and describes essential programming techniques.
There are two ways to program in the dialog editor:

Use the dialog editor’s menu bar and toolbar to create new dialogs or dialog elements and use the attributes
window to assign attribute values to them. The dialog editor will internally generate the corresponding
Natural code.
Open an event-handler section or an inline-subroutine section and specify Natural code explicitly. This code
will be added to the code that is generated internally. You can also enter parameter data areas, global data
areas and local data areas in the corresponding definition sections.

You can view the current dialog’s generated and specified code by choosing "Object > List" in the dialog
editor’s menu bar.

If you want a hands-on demonstration of how to program with the dialog editor, refer to the SYSEXEVT library.
This library contains sample dialogs demonstrating basic functionality. Before accessing the sample dialogs, read
the README file. Then execute the MENU dialog.

Notes:
Code written in the dialog editor must be in structured mode.

If you want to execute a Natural application using dialogs, you must use a dialog to start this application.

The following topics are covered below:

How To Open and Close Dialogs
How To Edit a Dialog’s Enhanced Source Code
How Dialogs, Controls and Items Are Related Hierarchically
How To Define Dialog Elements
How To Manipulate Dialog Elements
How To Create and Delete Dialog Elements Dynamically
How To Enable and Disable Dialog Elements
Defining and Using Context Menus
System Variables
Generated Variables
Message Files and Variables as Sources of Attribute Values
Triggering User-Defined Events
Suppressing Events
Menu Structures, Toolbars and the MDI
Executing Standardized Procedures
Linking Dialog Elements to Natural Variables
Validating Input in a Dialog Element
Storing and Retrieving Client Data for a Dialog Element
Creating Dialog Elements on a Canvas Control
Working with ActiveX Controls
Working with Arrays of Dialog Elements
Working with Control Boxes
Working with Error Events
Working with a Group of Radio-Button Controls
Working with List-Box Controls and Selection-Box Controls
Working with Nested Controls
Working with a Dynamic Information Line
Working with a Status Bar

407Copyright © Software AG 2002

Event-Driven Programming TechniquesEvent-Driven Programming Techniques

Working with Status Bar Controls
Working with Dynamic Information Line and Status Bar
Adding a Maximize/Minimize/System Button
Defining Color
Adding Text in a Certain Font
Adding Online Help
Defining Mnemonic and Accelerator Keys
Dynamic Data Exchange - DDE
Object Linking and Embedding - OLE

For further information on Event-driven Programming see Introduction to Event-Driven Programming.

How To Open and Close Dialogs

Opening a Dialog

An event-driven application is started by executing the base dialog. Events triggered by the end user will then
typically cause other dialogs to be started. The application ends when the base dialog is closed.

 To open a dialog from anywhere within an event-driven application

Use the statement OPEN DIALOG.

This statement causes the dialog to be loaded and the processing on its opening to be performed.

Control over processing returns from the opened dialog except for dialogs with the style "Dialog Box". For those
dialog styles, control returns only after the dialog has ended.

The parameters passed are accessible only during the processing on the opening of a dialog (before-open and
after-open events), except for when the parameters are declared as BY VALUE in the parameter data area of the
opened dialog or when the dialog has the style "Dialog Box".

To open a dialog from anywhere within an event-driven Natural application, the following syntax is used:

Operands

Operand1 is the name of the dialog to be opened. If the PARAMETERS-clause is used, operand1 must be a
constant (the name of a cataloged dialog).

Operand2 is the handle name of the parent.

Operand3 is a unique dialog ID returned from the creation of the dialog. It must be defined with format/length
I4.

Copyright © Software AG 2002408

Event-Driven Programming TechniquesHow To Open and Close Dialogs

Passing Parameters to the Dialog

When a dialog is opened, parameters may be passed to this dialog.

As operand4 you specify the parameters that are passed to the dialog.

With the PARAMETERS-clause, parameters may be passed selectively:

Note: You may only use the PARAMETERS-clause if operand1 is an alphanumeric constant and if the dialog is
cataloged.

Parameter-name is the name of the parameter as defined in the parameter data area section of the dialog.

To avoid format/length conflicts between operands and parameters passed, see the BY VALUE option of the
DEFINE DATA statement in the Natural Statements Manual.

When passing parameters only with operand4, a dialog may be opened as follows:

Example:

 /* The following parameters are defined in the calling dialog’s parameter
 /* data area (not in the parameter data area of the dialog to be opened):
 1 #MYDIALOG-ID (I4)
 1 #MYPARM1 (A10)
 /* Pass the operands #MYPARM1 and ’MYPARM2’ to the parameters #DLG-PARM1 and
 /* #DLG-PARM2 defined in the dialog to be opened:
 OPEN DIALOG ’MYDIALOG’
 USING #DLG$WINDOW
 GIVING #MYDIALOG-ID
 WITH #MYPARM1 ’MYPARM2’

409Copyright © Software AG 2002

Opening a DialogEvent-Driven Programming Techniques

When passing parameters selectively with the PARAMETERS-clause, a dialog may be opened as shown in the
following example:

Example:

 /* The following parameters are defined in the calling dialog’s parameter
 /* data area (not in the parameter data area of the dialog to be opened):
 1 #MYDIALOG-ID (I4)
 1 #MYPARM1 (A10)
 /* Pass the operands #MYPARM1 and ’MYPARM2’ to the parameters #DLG-PARM1 and
 /* #DLG-PARM2 defined in the dialog to be opened:
 OPEN DIALOG ’MYDIALOG’
 USING #DLG$WINDOW
 GIVING #MYDIALOG-ID
 WITH PARAMETERS
 #DLG-PARM1=#MYPARM1
 #DLG-PARM2=’MYPARM2’
 END-PARAMETERS

Permanence In Creating, Passing And Checking Data

The term "permanence" is used in Natural to denote data defined in a base dialog’s local data area whose
existence is guaranteed throughout the whole lifetime of the dialog. Data defined in the global data area are not
kept permanent because the global data area can be exchanged while the application is executed.

The reference to the permanent data is kept by saving the parameter data area internally during opening of the
dialog. This reference is reused when

a dialog element receives an event;
all parameters passed from one dialog to another are permanent, provided they reference the base dialog’s
local data area.

Parameters are accessible

during the before-open and after-open event processing on opening of a dialog or
if all of them reference the base dialog’s local data area.

The following example illustrates a case in which two parameters are kept permanently and one other is not.
Assume the base dialog is dialog A. This base dialog now opens dialog B, passing parameters #X and #Y. After
that, dialog B passes parameters #X and #Y on to dialog C. The #X and #Y parameters which are now in dialog
C will be permanent, even if dialog B is closed. If, however, dialog B passes its own parameter #Z when opening
dialog C, the parameter #Z is not permanent, because if dialog B is closed, the reference to its local data area is
no longer valid. No parameter in dialog C is accessible (#Z does not reference the base dialog’s local data area).

Copyright © Software AG 2002410

Event-Driven Programming TechniquesOpening a Dialog

Processing Steps When Opening a Dialog

This section describes what happens when a dialog is opening. You can open a dialog either by executing it, for
example from the command line, or by invoking it with an OPEN DIALOG statement.

The dialog object is loaded and starts executing.
The BEFORE-ANY event-handler section is executed, the value of the system variable *EVENT being
OPEN.
The BEFORE-OPEN event-handler section is executed.
The dialog window is created as specified in the dialog editor.
The BEFORE-ANY event-handler section is executed. *EVENT = AFTER-OPEN.
All dialog elements are created as specified in the dialog editor.
The dialog window and all dialogs are made visible except those that are VISIBLE = FALSE.
The AFTER-OPEN event-handler section is executed.
The AFTER-ANY event-handler section is executed. *EVENT = AFTER-OPEN.
The AFTER-ANY event-handler section is executed. *EVENT = OPEN (not if the dialog’s STYLE
attribute value is "Dialog Box").

Closing Dialogs

To close a dialog dynamically, you specify the following:

Operand1 is the identifier of the dialog as returned in the OPEN DIALOG statement.

Example:

 CLOSE DIALOG *DIALOG-ID /* Close the current Dialog

The dialog will then be erased from the screen and removed from memory. All local data associated with the
dialog will be gone.

Note: If a modal dialog is a child in a hierarchy of dialogs, the modal dialog should not close its parent(s)
because this will result in a deadlock.

operand1

Operand1 is the name of the dialog to be closed.

To close the current dialog, you specify *DIALOG-ID.

411Copyright © Software AG 2002

Processing Steps When Opening a DialogEvent-Driven Programming Techniques

Initializing Attribute Values

You can specify conditions for the opening and closing of a dialog: this applies to the before-open, after-open,
and close events. These conditions can be used to initialize the attribute values in the dialog.

The following is an example of after-open event-handler code: Red foreground color is assigned to push buttons
that the user must press after entering data in the associated input fields.

Example:

 DEFINE DATA LOCAL
 ...
 1 #OK-BUTTON HANDLE OF PUSHBUTTON
 1 #CALC-BUTTON HANDLE OF PUSHBUTTON
 1 #SAVE-BUTTON HANDLE OF PUSHBUTTON
 1 #CONVERT-BUTTON HANDLE OF PUSHBUTTON
 ...
 END-DEFINE
 ...
 #OK-BUTTON.FOREGROUND-COLOUR-NAME := RED
 #CALC-BUTTON.FOREGROUND-COLOUR-NAME := RED
 #SAVE-BUTTON.FOREGROUND-COLOUR-NAME := RED
 #CONVERT-BUTTON.FOREGROUND-COLOUR-NAME := RED

If you want to modify attribute values of dialog elements and of the dialog before the dialog is opened (and
displayed to the end user), do not specify this in the "before open" event-handler code, because the dialog
elements and the dialog window are not yet created. Instead, create the dialog with the dialog editor and set the
attribute VISIBLE to FALSE in the "Dialog Attributes" window. Then modify all the attribute values in the
after-open event-handler code (when the handles are available). Then make the dialog visible with VISIBLE =
TRUE.

Example:

 DEFINE DATA LOCAL
 ...
 1 #DIA-1 HANDLE OF DIALOG
 1 #OK-BUTTON HANDLE OF PUSHBUTTON
 1 #CALC-BUTTON HANDLE OF PUSHBUTTON
 ...
 END-DEFINE
 ...
 /* AFTER OPEN event-handler code section
 ...
 #OK-BUTTON.FOREGROUND-COLOUR-NAME := RED
 #CALC-BUTTON.FOREGROUND-COLOUR-NAME := RED
 #DIA-1.VISIBLE := TRUE

Copyright © Software AG 2002412

Event-Driven Programming TechniquesInitializing Attribute Values

How To Edit a Dialog’s Enhanced Source Code

What Is The Enhanced Source Code Format ?

The enhanced source code format enables you to edit source code that has been generated by the dialog editor.
You edit enhanced source code in a program editor window. When you edit a dialog, the dialog editor stores the
results in internal structures. From these structures, source code is generated when you save, stow, list or execute
any other system command on the dialog. Code is also generated when you refresh the program editor’s source
code window.

You can edit enhanced source code as you do any other Natural user code. The source code syntax is subject to a
number of formal conventions, however. For a documentation of the enhanced source code syntax, see The
Enhanced Source Code Format in the Dialog Components Manual.

When you execute a system command on a dialog you have just edited in the program editor source code
window, the dialog editor updates its internal structures and refreshes the source code window.

Note: The dialog editor preserves code layout only in the user code sections, such as event handlers.

The dialog editor supports the following source formats:

213. This is the format generated by Natural Version 2.1.3 (New Dimension). It is supported for input only.
You cannot generate 2.1.3 format with Natural Version 3.1 and Version 3.2.
22C. This is the format generated by Natural Version 2.2.2. In Natural for Windows and Unix/OpenVMS
Version 4.1, dialogs can no longer be generated in this format. It, too, is supported for input only.
22D. This is the "enhanced" source-code format that from now on is the standard. It is generated for
compiling, storing, and editing dialogs in Natural Version 2.2.3 and above.

The characteristics of the enhanced source code format are:

Dialog sources are readable and printable without requiring conversion.
Dialog sources consist only of legal and fully documented Natural syntax.
Dialog sources can be edited textually using program editor functions such as scanning for and replacing
text.
Dialog sources can be displayed in the Natural Debugger.
Dialog sources are larger than 213 or 22C format sources (by a factor between 1.25 and 3.5).
Any code that can be generated with the dialog editor can also be coded manually. For example, if you
"draw" a push-button control onto the user interface, the corresponding code is generated implicitly. You
can also create this push-button control explicitly with the help of a source-code window that provides you
with the functions of the program editor.
You can switch between the dialog editor and the program editor by selecting the source code window or
the dialog window. If you edit in either window, you need to synchronize your updates: (graphically)
modifying the dialog locks the source code window and you may not make changes there. Correspondingly,
if you change the source code, you may not make changes in the dialog window, which is locked. If your
editor is locked, its status bar displays "Locked".

413Copyright © Software AG 2002

How To Edit a Dialog’s Enhanced Source CodeEvent-Driven Programming Techniques

For dialogs in the old formats, this means:

They remain unchanged until they are processed in the dialog editor. They can be compiled and executed in
their old format.
When you load them into the dialog editor, the dialogs are saved in the new format. If they are saved in the
enhanced format, you must include the local data area NGULKEY1. Note that the storage size increases
when the dialogs are saved.
When you list or print them and you enable the "enhanced list mode" option, the dialogs are displayed using
the enhanced source code format.

Avoiding Incompatibilities Between Dialog Editor And Program Editor

When you edit the enhanced source code format, note that some of the syntax elements accepted by the program
editor are not accepted by the dialog editor. Enhanced source code editing is not intended as a new programming
technique in addition to using the dialog editor:

It may be syntactically acceptable to replace a dialog element’s numeric coordinate (a RECTANGLE-X
attribute value) with a variable reference. The dialog editor, however, will not accept this when the changes
are synchronized, and will prompt you when you issue a command requiring the source code.
The dialog editor may accept a reference to a variable’s STRING attribute even if the variable is not
declared, but the compiler will not accept this.

In the sections that are not user code, you should avoid such incompatibilities by adding only code that is
acceptable to both the compiler and the dialog editor.

In the user code sections, such as in event-handler sections and in external or internal subroutines, your choice of
programming techniques is not restricted by the dialog editor. In these sections, however, you have no visual
editing support.

As a general rule, a mixed approach is often the best, especially when you use dialog-editor- generated code as a
starting point.

Note: In the dialog editor, you can copy dialog elements to the clipboard and when you paste them into user
code, they appear as text.

Copyright © Software AG 2002414

Event-Driven Programming TechniquesAvoiding Incompatibilities Between Dialog Editor And Program Editor

How To Use The Enhanced Source Code Format

 To edit a dialog in the enhanced source code format

1. Load the dialog into the dialog editor.
2. From the "Dialog" menu, choose "Source Code".

Or choose the "Source Code" toolbar button.
Or press CTRL+ALT+C.

The dialog’s source code window appears and the program editor is loaded. This editor enables you to scan for
text strings, replace them, and so on. For more information on how to use the program editor, see The Program
Editor.

The enhanced source code format’s syntactical conventions are documented in the chapter The Enhanced Source
Code Format in the Dialog Components Manual.

Enhanced source code can be listed and printed as usual. You can also scan for strings by using the Find option
of the Edit menu.

Note: If you are replacing strings with this option, this can make a dialog source incompatible with the dialog
editor.

415Copyright © Software AG 2002

How To Use The Enhanced Source Code FormatEvent-Driven Programming Techniques

How Dialogs, Controls and Items Are Related
Hierarchically
Dialogs and their dialog elements are organized hierarchically. Typically, the dialog window contains a number
of controls. The controls are children of the window or of other controls which are capable of acting as
containers. A control may contain a number of items. For example, a list-box control may contain several
list-box items. The control is the parent of the items.

The dialogs themselves are also organized hierarchically. Every time the OPEN DIALOG statement is specified,
the parent of the newly created dialog must be provided as a parameter. This parameter may be NULL-HANDLE
or the handle of an existing dialog. If NULL-HANDLE is provided, the dialog belongs to the desktop rather than
to any other dialog. This means that the dialog can be closed and minimized independently of any other dialog in
the application. A dialog having an existing dialog as parent is closed or minimized when the parent dialog is
closed or minimized.

The first dialog in an application plays a special role and is sometimes called the base dialog. When the base
dialog is closed, all other dialogs in the application are also closed, whether they are children of the base dialog
or not.

All children on one hierarchical level are sorted in the sequence of their creation. Each dialog element therefore
always "knows" its parent, its predecessor and successor (on the same hierarchical level), and its first and last
child (if present). You can retrieve this information by using the following attributes:

PARENT
PREDECESSOR
SUCCESSOR
FIRST-CHILD
LAST-CHILD

These attributes contain handle values of dialog elements. If their value is NULL, the dialog element has no
parent, successor, or child. The following example demonstrates how to go through all dialog elements of a
dialog.

Example 1:

 1 #CONTROL HANDLE OF GUI

 #CONTROL := #DLG$WINDOW.FIRST-CHILD
 REPEAT UNTIL #CONTROL = NULL-HANDLE
 ...
 #CONTROL := #CONTROL.SUCCESSOR
 END-REPEAT

List-box controls and list-box items contain an additional attribute:

SELECTED-SUCCESSOR can be set for either the list-box control itself or for any of its items. It points to the
next selected item in a list-box control. For the list-box control itself, it points to the first selected item.

Copyright © Software AG 2002416

Event-Driven Programming TechniquesHow Dialogs, Controls and Items Are Related Hierarchically

Example 2:

 1 #ITEM HANDLE OF LISTBOXITEM

 #ITEM := #LISTBOX.SELECTED-SUCCESSOR
 REPEAT UNTIL #ITEM = NULL-HANDLE
 ...
 #ITEM := #ITEM.SELECTED-SUCCESSOR
 END-REPEAT

The above example is the query necessary to find all selected items in a list-box control where multiple selection
is allowed (MULTI-SELECTION attribute).

417Copyright © Software AG 2002

How Dialogs, Controls and Items Are Related HierarchicallyEvent-Driven Programming Techniques

How To Define Dialog Elements
Dialog elements are uniquely identified by a handle. A handle is a binary value that is returned when a dialog
element is created. A handle must be defined in a DEFINE DATA statement of the dialog.

You can define a handle

by creating a dialog or a dialog element with the dialog editor; in this case, the handle definition is
generated;
by explicitly entering the definition in a global, local, or parameter data area of the dialog;
by explicitly entering the definition in a subprogram or a subroutine.

Note: Handles of ActiveX controls are defined in a slightly different way than the standard handle definition
described below. This is described in Working with ActiveX Controls.

A handle is defined inside a DEFINE DATA statement in the following way:

Handles may be defined on any level.

Handle-name is the name to be assigned to the handle; the naming conventions for user-defined variables apply.

Dialog-element-type is the type of dialog element. Its possible values are the values of the TYPE attribute. It may
not be redefined and not be contained in a redefinition of a group.

Examples:

 1 #SAVEAS-MENUITEM HANDLE OF MENUITEM
 1 #OK-BUTTON (1:10) HANDLE OF PUSHBUTTON

When you have defined a handle, you can use the handle-name with handle attribute operands in those Natural
statements where an operand may be specified. With handle attribute operands, you can, for example,
dynamically query, set, or modify attribute values for the defined dialog-element-type. This is the most important
programming technique in the dialog editor. For details, see the section How To Manipulate Dialog Elements.

If there is a dialog element handle of the same name in two different dialogs, the PARENT attribute ensures that
Natural knows the difference between the two handles (two different PARENT values). Handles may be passed
as parameters or may be assigned from one handle variable to another.

HANDLE OF GUI

In addition to the handle types referring to one dialog element, the generic handle type HANDLE OF GUI is
available. In event-handler code, you can use HANDLE OF GUI to refer to the handle of any type of dialog
element.

This can be useful, for example, if you are querying an attribute value in all dialog elements on one level: you go
through the dialog elements one after the other; in the course of this query, it is not clear which type of dialog
element is going to be queried next. Then a GUI handle makes it possible to query the next dialog element
regardless of its type. This saves a lot of coding, because otherwise, you would have to query the attribute’s
value of each dialog element separately.

Example:

Copyright © Software AG 2002418

Event-Driven Programming TechniquesHow To Define Dialog Elements

 ...
 1 #CONTROL HANDLE OF GUI
 ...
 #CONTROL := #DLG$WINDOW.FIRST-CHILD
 REPEAT UNTIL #CONTROL = NULL-HANDLE
 ...
 #CONTROL := #CONTROL.SUCCESSOR
 END-REPEAT

NULL-HANDLE

The HANDLE constant "NULL-HANDLE" may be used to query, set or modify a NULL value of a HANDLE.
Such a NULL value means that the dialog element is nonexistent (even if it has been created explicitly).

Example:

 DEFINE DATA PARAMETER
 1 #PUSH HANDLE OF PUSHBUTTON
 END-DEFINE
 ...
 IF #PUSH = NULL-HANDLE
 ...

The HANDLE constant "NULL-HANDLE" represents the NULL value of a HANDLE variable or of an attribute
with format HANDLE. For handle variables, the value indicates that the expression handle.attribute refers to the
global attribute list. For attributes, this value indicates that no value is currently set.

419Copyright © Software AG 2002

NULL-HANDLEEvent-Driven Programming Techniques

How To Manipulate Dialog Elements
To manipulate dialog elements, Natural provides you with handle attribute operands. You use handle attribute
operands wherever an operand may be specified in a Natural statement. This is the most important programming
technique in event-handler code.

Important: You must have defined a handle.

Note: ActiveX controls are manipulated in a slightly different way than the standard way described below. This
is described in Working with ActiveX Controls.

Handle attribute operands may be specified as follows:

 handle.name - attribute.name [(index-specification)]

The handle-name is the handle of the dialog-element-type as defined in the HANDLE definition of the DEFINE
DATA statement.

The attribute-name is the name of an attribute which has to be valid for the dialog-element-type of the handle.

Copyright © Software AG 2002420

Event-Driven Programming TechniquesHow To Manipulate Dialog Elements

Examples:

 1 #PB-1 HANDLE OF PUSHBUTTON /* #PB-1 is a handle-name of the
 /* dialog-element-type PUSHBUTTON
 RESET #PB-1.STRING... /* #PB-1.STRING is the handle attribute operand
 /* where STRING is a valid attribute-name of the
 /* dialog-element-type PUSHBUTTON

 1 #RB-1(1:5) HANDLE OF RADIOBUTTON /* #RB-1 is an array of five RADIOBUTTONs
 IF #RB-1.CHECKED(3) = CHECKED /* If the third radio-button control is
 THEN... /* checked ...

Querying, Setting and Modifying Attribute Values

In most applications, it will be necessary

to set an attribute value before creating the dialog element,
to modify the value after creating the dialog element, and
to query an attribute value.

In some cases, it may be necessary to modify and query some attributes during processing, for example to query
the checked/not checked state of a radio-button control or to disable (= modify) a menu item.

You can do that, for example, in the ASSIGN, MOVE or CALLNAT statements.

Examples:

 1 #PB-1 HANDLE OF PUSHBUTTON /* #PB-1 is a handle-name of the
 ... /* dialog-element-type PUSHBUTTON
 #PB-1.STRING:= ’MY BUTTON’ /* Set or modify the value of the STRING
 /* attribute to ’MY BUTTON’
 #TEXT:= #PB-1.STRING /* Query the value of the STRING attribute
 /* and assign the value to #TEXT
 CALLNAT ’SUBPGM1’ #PB-1.STRING /* Query the value of the STRING attribute
 /* and pass it on to the subprogram

When you use the handle-name variable only on the left side of the statements, as in the first of the three
examples above, the attribute value is set or modified, that is, it is assigned the value of the specified operand.

When you use the handle-name variable on the right side of the statements, as in the second example, the
attribute value is queried, that is, the value is assigned to the operand.

Once a handle has been defined (either explicitly in specified Natural code, or implicitly with the dialog editor),
it can be used with most Natural statements. However, only a specific set of attributes can be queried, set or
modified for a particular dialog element. To find out which values an attribute can have, see the chapter
Attributes in the Dialog Components Manual.

Although an exact data type is specified for the values of most attributes, it is sufficient to supply
move-compatible values to a handle attribute operand. The rules are the same as those for Natural variables.

Restrictions

Handle attribute operands must not be used in the following statements:

AT BREAK, FIND, HISTOGRAM, INPUT, READ, READ WORK FILE.

421Copyright © Software AG 2002

Querying, Setting and Modifying Attribute ValuesEvent-Driven Programming Techniques

User-defined variables can be used instead.

Numeric/Alphanumeric Assignment

If you assign numeric operands to alphanumeric attributes, the values of these attributes will be in a
non-displayable format. The Natural arithmetic assignment rules apply.

If you need a displayable format, you can use MOVE EDITED.

Copyright © Software AG 2002422

Event-Driven Programming TechniquesNumeric/Alphanumeric Assignment

Examples:

 #PB-1.STRING:= -12.34 /* Non-displayable format
 MOVE EDITED #I4 (EM = -Z(9)9) TO #PB-1.STRING /* Displayable format

The following edit masks may be used for the various format/length definitions of numeric operands:

Format/Length Edit Mask

I1 -ZZ9

I2 -Z(5)9

I4 -Z(9)9

Nn.m/Pn.m -Z(n).9(m)

423Copyright © Software AG 2002

Numeric/Alphanumeric AssignmentEvent-Driven Programming Techniques

How To Create and Delete Dialog Elements Dynamically
Dialog elements are usually added to a dialog by means of the dialog editor. However, they can also be created
and deleted dynamically. This may be done, for example, when the layout of a dialog is strongly
context-sensitive.

A dialog element is created dynamically with the ADD action of the PROCESS GUI statement. This action
returns a handle to the newly created dialog element. As soon as the dialog element is created, this handle points
to a set of attributes specified for the dialog element just created.

Note: ActiveX controls are created in a slightly different way than the standard way described below. This is
described in Working with ActiveX Controls.

For more information on the actions available, and on the parameters that can be passed, see the chapter
Executing Standardized Procedures.

Global Attribute List

By modifying any handle attribute operand of the form "handlename.attributename" (for example,
#PB-1.STRING), you change an attribute value of the specific dialog element. As long as the dialog element is
not yet created and the handle variable has its initial value (NULL-HANDLE), the handle attribute operand
"handlename.attributename" refers to the global attribute list.

The global attribute list is a collection of all attributes defined for any dialog element. Natural contains one such
collection. Whenever a dialog element is created, it "inherits" its attributes from this global attribute list. It does
not inherit them when you create the dialog element with the PROCESS GUI statement action ADD using the
WITH PARAMETERS option.

Creating Dialog Elements Statically and Dynamically

To define a dialog element statically (in the dialog editor), with an individual set of attributes, you must first set
the attributes in the global attribute list to the desired values and then create the dialog element. After creation,
the values of the attributes in the global attribute list remain intact. The next created dialog element gets the same
attributes from the global attribute list as the previous one, except those that have been modified.

The status of the global attribute list as found in the "after open" event handler is influenced by the dialog
elements defined statically. Therefore, before you start creating dialog elements dynamically in the "after open"
event handler, you should reset the attributes by means of the PROCESS GUI action RESET-ATTRIBUTES to
prevent your dialog elements from inheriting unexpected values from the global attribute list. If you want to
avoid this inheritance problem, use the PROCESS GUI statement action ADD with the WITH PARAMETERS
option.

Unexpected values may also result from having attribute values that mean different things if used by different
types of dialog elements. For example, the value "s" of the attribute STYLE means "scaled" for the dialog
element type bitmap control but "solid" for the dialog element type line control.

The PROCESS GUI action ADD is used to define a dialog element dynamically. This clause of the PROCESS
GUI statement enables you to specify the attribute values within the statement. The inheritance of attributes from
the global attribute list does not affect the PROCESS GUI statement action ADD. The attributes specified in the
statement are transferred to the global attribute list before the action ADD is performed.

Note: When you use the PROCESS GUI statement with Parameter Clause 2 of the ADD action, the global
attribute list is not used or affected. For parameters which are needed to create the dialog element, but which
were not specified in the WITH PARAMETERS section of the PROCESS GUI action ADD statement, the
default value is taken. Apart from these, only the parameters which are passed explicitly in the parameter list are
used to create the dialog element.

Copyright © Software AG 2002424

Event-Driven Programming TechniquesHow To Create and Delete Dialog Elements Dynamically

To create list-box and selection-box items dynamically, it may be more convenient to use the PROCESS GUI
action ADD-ITEMS. This allows you to insert several items at a time.

Example:

 /* #PB-A inherits the current settings of the global attribute list
 #PB-A.STRING := ’TEST1’
 PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-A
 #PB-B.STRING := ’TEST2’
 /* #PB-B has the same attributes as #PB-A except STRING. This leads to #PB-B
 /* covering #PB-A.
 PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-B
 COMPUTE #PB-C.RECTANGLE-Y = #PB-B.RECTANGLE-Y + #PB-C.RECTANGLE-H + 20
 /* #PB-B has the same attributes as #PB-A except RECTANGLE-Y
 /* #PB-C will be located 20 pixels below #PB-B
 PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-C

To delete dialog elements dynamically, you use the PROCESS GUI action DELETE. You can also use this
technique to delete dialog elements created with the dialog editor (at design time). You should, however, avoid
using the handle of the deleted dialog element because this is invalid.

Dialog elements often do not have to be created dynamically. In some cases, it is sufficient to make dialog
elements VISIBLE = TRUE and VISIBLE = FALSE, depending on the context. This technique is more efficient
and easier to handle. It also enables you to "insert" dialog elements anywhere in the navigation sequence.

Example:

 DEFINE DATA LOCAL
 ...
 1 #PB-1 HANDLE OF PUSHBUTTON
 ...
 END-DEFINE
 ...
 #PB-1.VISIBLE := FALSE
 ...
 IF... /* Logical condition
 #PB-1.VISIBLE := TRUE
 END-IF

How to Handle Events of Dynamically Created Dialog Elements

When a dialog element is created dynamically, you cannot use the dialog editor to associate events to it. Instead,
you must handle all events of all dynamically created dialog elements in the DEFAULT event. In this event, you
must filter out which event occurred for which dialog element. The code for this is similar to the code generated
by the dialog editor. The general structure is:

Example:

425Copyright © Software AG 2002

How to Handle Events of Dynamically Created Dialog ElementsEvent-Driven Programming Techniques

 DECIDE ON FIRST *CONTROL
 VALUE #PB-A
 DECIDE ON FIRST *EVENT
 VALUE ’CLICK’
 /* Click event-handler code
 NONE
 IGNORE
 END-DECIDE
 VALUE #PB-B
 ...
 VALUE #PB-C
 ...
 END-DECIDE

In the case of event code for dynamically created ActiveX controls, where event parameters are used, it is
necessary to precede the event code with an OPTIONS 2 statement containing the name of the event, otherwise
the compiler will not be able to process parameter references (e.g., #OCX-1.<<PARAMETER->>) successfully.
However, in contrast to the implicit generation of the OPTIONS statement by the Dialog Editor for events for
statically created controls, no OPTIONS 3 statement should be coded in this case. Otherwise the Dialog Editor
would falsely interpret the OPTIONS 3 statement as the end marker for the DEFAULT event, resulting in a
scanning error on attempting to load the dialog.

Example:

DECIDE ON FIRST *CONTROL
VALUE #OCX-1 /* MS Calendar control
 DECIDE ON FIRST *EVENT
 VALUE ’-602’ /* DispID for KeyDown event
 OPTIONS 2 KeyDown
 /* KeyDown event-handler code containing parameter
 /* access (e.g. #OCX-1.<>)
 NONE
 IGNORE
 END-DECIDE
...
END-DECIDE

Copyright © Software AG 2002426

Event-Driven Programming TechniquesHow to Handle Events of Dynamically Created Dialog Elements

How To Enable and Disable Dialog Elements
During end-user interaction, it may be implicitly clear that certain dialog elements must not be used. For
example, if a dialog requiring personnel data contains a group of radio-button controls for marital status and an
input-field control for date of marriage, the input-field control must be disabled whenever the marital status is
other than "married".

There are two ways to do this:

Use Natural code to enable/disable a dialog element dynamically.
Use the dialog editor (to disable a dialog element initially).

The first method is used more often.

The Natural code might look like this:

Examples:

 /*First alternative
 ...
 IF #RB-1.ENABLED = TRUE /* Logical condition
 #IF-1.ENABLED := TRUE /* Set ENABLED to TRUE
 END-IF
 ...
 /*Second alternative
 #PB-1.ENABLED := #RB-1.ENABLED

When you use the dialog editor, you set the attribute ENABLED to TRUE by marking the "Enabled" entry in the
dialog element’s attributes window.

To disable editing in input-field controls, selectionbox controls and edit area controls, it is not always necessary
to disable these dialog elements entirely. It may be sufficient to make them MODIFIABLE = FALSE.

Defining and Using Context Menus
As from Natural v4.1.1, it is possible to create context menus for use within Natural applications. The context
menus can be completely static (i.e., the menu contents are known in advance and can be built via the dialog
editor) or wholly or partially dynamic (i.e., the menu contents and/or state depend on the runtime context and are
not completely known at design time).

Construction

A context menu is very similar in concept to a submenu. Therefore, the same menu editor is used for editing a
context menu as is used for editing a dialog’s menu bar. Menu items can be added to context menus, and events
associated with them, in exactly the same way as for menu-bar submenus. There are no functional differences to
the menu-bar editor, except that the ’OLE’ combo box (which is applicable only to top-level menu-bar
submenus) will always be disabled. It should be noted, however, that any accelerators defined for context menu
items will be globally available as long as that menu item exists. Furthermore, the accelerator will trigger the
menu item for which it is defined even if the context menu is not being displayed or if the focus is on a control
using a different context menu or no context menu at all.

The context-menu editor may be invoked via either a new menu item, ’Context menus...’ on the ’Dialog’ menu,
or via its associated accelerator (CTRL+ALT+X by default), or toolbar icon. However, because the
context-menu editor can only edit one context menu editor at a time, the context-menu editor is not invoked
directly. Instead, the Dialog Context Menus window is shown, where operations on the context menu as a whole
are made, and from which the menu editor for a given (selected) context menu can be invoked.

427Copyright © Software AG 2002

How To Enable and Disable Dialog ElementsEvent-Driven Programming Techniques

Internally, in order to distinguish between submenus and context menus, context menus have a new type,
CONTEXTMENU. Otherwise, the generated code in both cases is identical. Here is some sample code
illustrating the statements used to build up a simple context menu containing two menu items:

/* CREATE CONTEXT MENU ITSELF:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #CONTEXT-MENU-1
 TYPE = CONTEXTMENU
 PARENT = #DLG$WINDOW
END-PARAMETERS GIVING *ERROR
/* ADD FIRST MENU ITEM:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-1
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the first item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 1’
END-PARAMETERS GIVING *ERROR
/* ADD SECOND MENU ITEM:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-2
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the second item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 2’
END-PARAMETERS GIVING *ERROR

Note that if context menus or context-menu items are created dynamically in user-written code, the context menu
or menu items will not be visible to the dialog editor. For example, the dynamically created menu item will not
be visible in the context-menu list box, and the dynamically created menu items will not be visible in the
context-menu editor.

Association

After creating a context menu, the context menu needs to be associated with a Natural object. Context menus are
supported for almost all controls types capable of receiving the keyboard focus and for the dialog window itself.
The full list includes ActiveX controls, bitmaps, canvasses, edit areas and input fields, list boxes, push buttons,
radio buttons, scroll bars, selection boxes, table controls, toggle buttons, standard and MDI child windows, and
MDI frame windows.

For all object types supporting context menus, the corresponding attribute dialogs in the dialog editor include a
read-only combo box listing all context menus created by the dialog editor, together with an empty entry. The
selection of the empty entry implies that no context menu is to be used for this object, and is the default.

Internally, the association is achieved by a new attribute, CONTEXT-MENU , which should be set to the handle
of a context menu. This attribute can be assigned at or after object creation time, and defaults to
NULL-HANDLE if not specified, indicating the absence of a context menu. For context menus created by the
dialog editor, the context menu is specified at control creation time as illustrated below:

Copyright © Software AG 2002428

Event-Driven Programming TechniquesAssociation

PROCESS GUI ACTION ADD WITH
PARAMETERS
 HANDLE-VARIABLE = #LB-1
 TYPE = LISTBOX
 RECTANGLE-X = 585
 RECTANGLE-Y = 293
 RECTANGLE-W = 142
 RECTANGLE-H = 209
 MULTI-SELECTION = TRUE
 SORTED = FALSE
 PARENT = #DLG$WINDOW
 CONTEXT-MENU = #CONTEXT-MENU-1
 SUPPRESS-FILL-EVENT = SUPPRESSED
END-PARAMETERS GIVING *ERROR

The same syntax can also be used for controls created in user-written event code. In other cases, where the
control was created by the dialog editor but the context menu was not, the context menu attribute must be
assigned to the control after its creation, e.g., in the dialog’s AFTER-OPEN event:

/* CONTEXT MENU SPECIFIED AFTER CREATION:

#LB-2.CONTEXT-MENU := #CONTEXT-MENU-2

Note that a context menu is not destroyed when an object using it is destroyed. Instead, it is destroyed when its
parent object (typically, the dialog for which the context menu was defined) is destroyed. Similarly, the
assignment of a new menu handle to the CONTEXT-MENU attribute where one is already assigned does not
result in the previous context menu being destroyed. Thus, using the above examples, neither of the following
statements results in CONTEXT-MENU-1 being destroyed:

PROCESS GUI ACTION DELETE WITH #LB-1 /* #CONTEXT-MENU-1 LIVES ON

#LB-1.CONTEXT-MENU := #CONTEXT-MENU-2 /* SAME HERE

Invocation

The invocation of static context menus is transparent to the application. The tracking of the context menu and the
triggering of the events associated with the menu items is done by Windows and Natural. The context menu is
always displayed at the current mouse cursor position. Therefore, there are no new PROCESS GUI statements
for displaying context menus.

However, in order to support dynamic context menus or static context menus that need to be modified at runtime
(e.g. to disable or check particular menu items before the context menu is displayed), context menus and
submenus receive a BEFORE-OPEN event. This applies to submenus belonging to a menu bar as well as to
submenus belonging to a context menu. In addition, it is possible to suppress this event via the use of a new
attribute, SUPPRESS-BEFORE-OPEN-EVENT, which defaults to SUPPRESSED. Assuming the event is not
suppressed, the BEFORE-OPEN event will be triggered immediately before a context menu is displayed. This
gives the application the chance to modify the context menu according to the current program state. For example,
menu items could be added or deleted, or particular menu items grayed or checked. Here is some sample code
for the BEFORE-OPEN event:

429Copyright © Software AG 2002

InvocationEvent-Driven Programming Techniques

/* DELETE FIRST MENU ITEM:
PROCESS GUI ACTION DELETE WITH #MITEM-1
/* CHECK SECOND MENU ITEM:
#MITEM-2.CHECKED := CHECKED
/* DISABLE THIRD MENU ITEM:
#MITEM-3.ENABLED := FALSE
/* INSERT NEW MENU ITEM BEFORE #MITEM-3:
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-4
 TYPE = MENUITEM
 DIL-TEXT = ’Invokes the first item’
 PARENT = #CONTEXT-MENU-1
 STRING = ’Item 3’
 SUCCESSOR = #MITEM-3
END-PARAMETERS GIVING *ERROR

For context menus not created by the dialog editor, the handling of the BEFORE-OPEN event must be done in
the DEFAULT event for the dialog. Note also that if a control or dialog is disabled, no context menu is
displayed, and the BEFORE-OPEN event is also not triggered. The same applies if the context menu itself is
disabled. For example:

#CONTEXT-MENU-1.ENABLED := FALSE /* DISABLE CONTEXT MENU DISPLAY

Note that it is possible to disable the context menu in this way during the BEFORE-OPEN event, allowing
selective disabling of the context menu depending on the mouse cursor position within the control. For example,
it might be desired to only display a context menu if the mouse cursor is over a selected list-box item.
Determining whether this is the case is possible via the use of two PROCESS GUI ACTION calls:

INQ-CLICKPOSITION has been extended to controls other than bitmaps and canvasses to return the (X, Y)
position of the right mouse button click within the control. This is updated immediately prior to the sending
of the BEFORE-OPEN event.
INQ-ITEM-BY-POSITION. This allows translation of the relative co-ordinate returned by
INQ-CLICKPOSITION applied to a list box to the corresponding item.

As an example of the use of these two new actions, consider the situation where we want to detect whether the
cursor was over a selected list-box item when the right mouse button was pressed in order to determine whether
to display a context menu or not. This can be achieved by the following code in the BEFORE-OPEN event of the
associated context menu:

PROCESS GUI ACTION INQ-CLICKPOSITION WITH
 #LB-1 #X-OFFSET #Y-OFFSET
PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
 #LB-1 #X-OFFSET #Y-OFFSET #LBITEM
#MENU = *CONTROL
IF #LBITEM = NULL-HANDLE /* NO ITEM UNDER (MOUSE) CURSOR */
 #MENU.ENABLED := FALSE
ELSE
 IF #LBITEM.SELECTED = FALSE /* ITEM UNDER CURSOR DESELECTED */
 #MENU.ENABLED := FALSE
 ELSE /* ITEM UNDER CURSOR IS SELECTED */
 #MENU.ENABLED := TRUE
 END-IF
END-IF

In some cases, it may be desired to automatically select the item under the mouse cursor if it is not already
selected, clearing any existing selection. For list boxes, it is possible to achieve this by using the new
AUTOSELECT attribute, either directly or via the new ’Autoselect’ check box (see previous bitmap) in the List
Box Attributes window in the dialog editor. If this attribute is set to TRUE, Natural will automatically update the

Copyright © Software AG 2002430

Event-Driven Programming TechniquesInvocation

selection before sending the BEFORE-OPEN event, if the context menu was invoked over an unselected list-box
item.

For table controls, any change in the selection must be done via the application itself in the BEFORE-OPEN
event. To make this possible, another new PROCESS GUI ACTION has been introduced for table controls:

TABLE-INQUIRE-CELL. This returns the cell’s row and column number (starting from 1) for a relative
(X, Y) position within the table. This position can (and would typically be) the position returned by a
previous call to PROCESS GUI ACTION INQ-CLICKPOSITION.

Sharing of Context Menus

It is of course possible to associate the same context menu with more than one object (i.e., control or dialog). For
example:

#LB-1.CONTEXT-MENU := #CTXMENU-1
#LB-2.CONTEXT-MENU := #CTXMENU-1

In such a scenario, we need to be able to determine for which control the context menu was invoked. We cannot
use *CONTROL in the BEFORE-OPEN event, because this will contain the handle of the context menu itself.
Instead, it is necessary to inquire which control has the focus, since Natural automatically places the focus on the
control for which the context menu is being invoked. Here is some sample BEFORE-OPEN event code
illustrating the use of this technique:

PROCESS GUI ACTION GET-FOCUS WITH #CONTROL
DECIDE ON FIRST VALUE OF #CONTROL
 VALUE #LB-1
 #MITEM-17.ENABLED := FALSE
 VALUE #LB-2
 #MITEM-17.CHECKED := CHECKED
 NONE
 IGNORE
END-DECIDE

431Copyright © Software AG 2002

Sharing of Context MenusEvent-Driven Programming Techniques

System Variables
Whenever you specify an event to occur with a given dialog element, the dialog editor generates code containing
the Natural system variables *CONTROL, *DIALOG-ID and *EVENT.

During the processing, *CONTROL contains the dialog element’s handle, *EVENT contains the event name and
*DIALOG-ID identifies an instance of a dialog.

You can reference these system variables whenever you enter Natural code within the dialog editor. If, for
example, the end user clicks on a push-button control and the event handler calls a shared subroutine, you can
use these system variables as logical condition criteria to trigger the subroutine.

For further details on these system variables, see the Natural Reference Manual.

Generated Variables

#DLG$PARENT

You use this generated variable of type "user" to work with MDI child windows, for example. When you create a
dialog, Natural generates this variable in order to hold the handle of the parent dialog. In event-handler code, you
can, for example, use this variable to open an MDI child dialog from another MDI child dialog, as shown below.

Note: You should not use names for user-defined variables that begin with #DLG$ to avoid conflicts with
generated variables.

Copyright © Software AG 2002432

Event-Driven Programming TechniquesSystem Variables

Example:

 OPEN DIALOG ’MDICHILD’ #DLG$PARENT #CHILD-ID

#DLG$WINDOW

You use this generated variable to dynamically set the attributes within a dialog. When you create a dialog,
Natural generates this variable in order to hold the handle of the dialog window. #DLG$WINDOW is the default
name of this variable; you may change it by overwriting the "Name" entry in the upper left of the dialog’s
attributes window. In event-handler code, you can, for example, use this variable to minimize the dialog window
if certain logical condition criteria are met, as shown below.

#DLG$WINDOW represents the graphical user interface aspects of a dialog, while the *DIALOG-ID system
variable represents the runtime aspects. *DIALOG-ID must be used in OPEN DIALOG, CLOSE DIALOG and
SEND EVENT statements.

Note: You should not use names for user-defined variables that begin with #DLG$ to avoid conflicts with
generated variables.

Example:

 ...
 IF ...
 #DLG$WINDOW.MINIMIZED := TRUE
 END-IF
 ...

433Copyright © Software AG 2002

#DLG$WINDOWEvent-Driven Programming Techniques

Message Files and Variables as Sources of Attribute
Values
Most dialog elements have a STRING attribute. As an alternative to specifying the attribute value by typing in
the text in the "String" entry of the attributes window, you can select a variable or a message file number from
which the text is taken at runtime. In this case, the attribute value is determined by the variable’s current value or
the selected message file at the dialog element’s creation time. You can also specify attribute sources for the
BITMAP-FILE-NAME, DIL-TEXT and ACCELERATOR attributes.

 To select a message file number or specify a variable

1. Invoke the dialog element’s attribute window.
2. Push the "Source" button to the right of the "String" entry.

The "Attribute Source" dialog box appears. The default attribute source is "Constant"; you can also enter the
number of the message file, or enter the variable name.

Note: If you are using an integer variable as the source of an attribute value, note that at runtime, the message
with the corresponding number from your message file will be displayed. To avoid this, you can MOVE the
contents of this integer variable to a variable of format N, for example.

Triggering User-Defined Events
Aside from standard events, such as before-open, you may define user-defined events for dialogs. User-defined
events are useful whenever it is necessary for one dialog to cause an action to occur in another dialog.

A user-defined event occurs whenever you have specified a SEND EVENT statement in dialog A with the name
of a user-defined event in the target dialog B. This target dialog B for which you wish to trigger the user-defined
event must already be active. You can activate dialog B by using the OPEN DIALOG statement. If you do not
issue the OPEN DIALOG statement first, the SEND EVENT statement will cause a runtime error.

You can define your own events for dialogs by pressing the "New" button in the "Events" dialog event handler
menu or from the dialog’s context menu. Enter any name for your newly-defined event and specify the
corresponding event section. It is recommended that this name begin with "#" to distinguish your event from
predefined events.

During execution of an event handler, the SEND EVENT statement triggers the user-defined event handler in a
different dialog. After this user-defined event handler has been executed, control will be returned to the previous
dialog, whose execution will resume at the statement following the SEND EVENT statement. This can be
compared to a CALLNAT statement that causes a subprogram to be executed.

Similar to the OPEN DIALOG statement, parameters may be passed to the dialog. In order to pass parameters
selectively (PARAMETERS-clause), you have to specify the name of the dialog in addition to the identifier of the
dialog (operand2).

The SEND EVENT statement must not trigger an event in a dialog that is about to process an event. This is the
case, for example, when dialog A sends an event to dialog B and the event handler in dialog B sends an event to
dialog A which has not yet finished its event handling. A similar case is when dialog A opens dialog B and the
before-open or after-open event contains a SEND EVENT back to dialog A.

To trigger a user-defined event, you specify the following syntax:

Copyright © Software AG 2002434

Event-Driven Programming TechniquesMessage Files and Variables as Sources of Attribute Values

Operands

Operand1 is the name of the event to be sent.

Operand2 is the identifier of the dialog receiving the user-defined event and must be defined with format/length
I4. You can retrieve this identifier, for example, by querying the value of #DLG$PARENT.CLIENT-DATA.

Passing Parameters to the Dialog

It is possible to pass parameters to the dialog receiving the user event.

As operand3 you specify the parameters which are passed to the dialog.

With the PARAMETERS-clause, parameters may be passed selectively.

PARAMETERS-clause

Note: You may only use the PARAMETERS-clause if the target dialog is cataloged.

Dialog-name is the name of the dialog receiving the user-defined event.

When you use only operand3 to pass parameters, it might look like this:

Example:

 /* The following parameters are defined in the dialog’s
 /* parameter data area:
 1 #DLG-PARM1 (A10)
 1 #DLG-PARM2 (A10)
 1 #DLG-PARM3 (A10)
 1 #DLG-PARM4 (A10)
 /* When sending the user-defined event, pass the operands #MYPARM1 ’MYPARM2’ to
 the parameters #DLG-PARM1 and #DLG-PARM2:
 SEND EVENT ’MYEVENT’ TO #DLG$DIA-ID WITH #MYPARM1 ’MYPARM2’

435Copyright © Software AG 2002

Passing Parameters to the DialogEvent-Driven Programming Techniques

When you use the PARAMETERS-clause, the user-defined event might look like this:

Example:

 /* The following parameters are defined in the dialog’s
 /* parameter data area:
 1 #DLG-PARM1 (A10)
 1 #DLG-PARM2 (A10)
 1 #DLG-PARM3 (A10)
 1 #DLG-PARM4 (A10)
 /* When sending the user-defined event, the operand #MYPARM2 is passed to the
 /* parameter #DLG-PARM2 and the operand ’MYPARM3’ is passed to the parameter
 /* #DLG-PARM3:
 SEND EVENT ’MYEVENT’ TO #DLG$DIA-ID
 USING DIALOG ’MYDIALOG’
 WITH PARAMETERS
 #DLG-PARM3=’MYPARM3’
 #DLG-PARM2=#MYPARM2
 END-PARAMETERS

To avoid format/length conflicts between operands passed and their parameter definitions, see the BY VALUE
option of the DEFINE DATA statement in the Natural Statements Manual.

Copyright © Software AG 2002436

Event-Driven Programming TechniquesPassing Parameters to the Dialog

Suppressing Events
If an event occurs, normally an event handler will be triggered. It may, however, sometimes be necessary to
dynamically suppress the execution of the event-handler code whenever the event has occurred. For example, if
you want to modify the string of an input field control within the change-event handler, you must suppress the
change event before modification to avoid an infinite loop because the modification itself triggers a change
event.

The event-handler code may look like this:

Example:

 ...
 IF... /* Logical condition criteria
 #IF-1.SUPPRESS-CHANGE-EVENT := SUPPRESSED /* Suppress the event
 END-IF
 ...

By default, the dialog editor generates code to suppress all events for which no event handler code has been
entered. In the dialog editor, you can also suppress an event with the Suppress option in the "Events..." dialog
box.

If you suppress an event, the before-any and after-any events are also suppressed for this event.

437Copyright © Software AG 2002

Suppressing EventsEvent-Driven Programming Techniques

Menu Structures, Toolbars and the MDI

Creating a Menu Structure

A menu structure consists of three types of dialog elements:

menu-bar controls,
menu items,
submenu controls.

A menu structure has one menu-bar control consisting of several menu items. The menu bar with its items is
displayed directly beneath the window’s title bar. Each menu item may be simple or may represent a submenu
control, which allows you to pull down several menu items grouped vertically. Therefore, submenu controls may
contain items representing a submenu control one level lower. A submenu control becomes visible when the
representing item in the menu-bar control or the parent submenu control is clicked upon.

There are two ways to create menu structures:

Use the dialog editor; or
use Natural code.

If you use the dialog editor

1. Check the "Menu Bar" entry in the dialog’s attribute window. Click OK.
When you go back to the dialog, a dummy menu-bar control appears.

2. Double-click on the dummy menu-bar control, or from the Natural Menu, select "Dialog > Menu Bar", or
use CTRL+M.
The "Dialog Menu Bar" dialog box appears. This dialog box is divided into three group frames: menu bar,
selected submenu and selected menu item.

3. In the selected menu items group frame, use "New" to add a menu item behind the selected position, or at
the beginning. Now use the selected menu-item group frame to modify attribute values or add event
handlers to the new menu item.

Normal menu items have a click event whose code is executed when the end user clicks on the menu item.

Note: The MENU-ITEM-TYPE of the menu item can also be "Separator", in which case the item is no text item.

If you use Natural code

1. Create a Menu Bar with the PARENT attribute set to ’NULL-HANDLE’ or ’windowhandle’.
2. To create a simple menu item: the PARENT attribute must have the value ’menubarhandlename’.
3. To create a submenu control: the submenu control’s PARENT attribute must have the value

’NULL-HANDLE’ or ’ windowhandlename’. Then create a menu item with PARENT =
’menubarhandlename’ and MENU-HANDLE = ’submenuhandlename’.

4. Then associate the menu bar with a dialog window by updating the window’s MENU-HANDLE attribute
with the handle of the menu bar as set in the first step.

5. The event handling for the dynamically created menu items must be done in the default event handler, as
described in the section How to Create and Delete Dialog Elements Dynamically.

The PARENT attribute determines when the menu bar or the submenu control will be destroyed. When
PARENT = ’windowhandlename’, the menu bar/the submenu control will be destroyed when the window is
destroyed. This is the default setting, which is also used by the dialog editor. If PARENT = NULL-HANDLE,
the menu bar/the submenu control will be destroyed only when the application is terminated.

Copyright © Software AG 2002438

Event-Driven Programming TechniquesMenu Structures, Toolbars and the MDI

If you define the menu structure’s handles inside a global data area, you can share these definitions among
several dialogs.

 To build the above menu structure

1. Define the handles of the menu-bar control, the menu items, and the submenu control(s) as the user-defined
variables in the handler of the applicable event.

2. Create the controls and items by assigning values to the attributes (PARENT, ...) and by executing the
PROCESS GUI statement action ADD.

3. Create the controls and items in the sequence menu-bar control, submenu control with menu items.
4. Insert the controls and items in the sequence submenu control into menu-bar control, and menu-bar control

into dialog window.

You can study how to build a menu structure in code by using the enhanced dialog list mode to list a dialog with
an editor-built menu. To get a code model for creating a menu item, create a menu-bar control with the dialog
editor, go to the menu-bar control attributes window, cut a menu item and paste it into any chosen event-handler
section. The generated code for the menu item appears.

Parent-Child Hierarchy in Menu Structures

Sometimes, it is necessary to use code for going through each element in a menu structure. For menus, the
parent-child hierarchy is structured in a way that is not evident from the graphical representation of the menu
structure.

In the above diagram, the first child of the dialog would be the menu-bar control. Its successor would be
submenu control S1, and so on. To go from menu item MI-1 to submenu S1, you query for the
MENU-HANDLE attribute value of MI-1. The value you get is the handle value of S1.

Creating a Toolbar

There are two ways of creating toolbars and their items:

Use the dialog editor; or
use Natural code to create them dynamically.

439Copyright © Software AG 2002

Parent-Child Hierarchy in Menu StructuresEvent-Driven Programming Techniques

 To use the dialog editor

1. Double-click on the toolbar or from the Natural Menu, select "Dialog > Toolbar".
The toolbar attributes window opens.

2. Add toolbar items by clicking on the "New" push button.
3. Assign bitmap file names and other attribute values to the new toolbar item.

If you want to use Natural code for dynamic creation, you can study how to build a tool bar in code. Use the
enhanced dialog list mode to list a dialog with an editor-built tool bar.

Sharing Menu Structures, Toolbars and DILs (MDI Application)

An MDI (multiple document interface) application consists of a frame dialog that provides the menu structure,
toolbar, and DIL shared among all child dialogs. An MDI frame dialog allows you to tile or cascade its child
dialogs.

Note: You may only share the toolbar if the PARENT of the toolbar is the dialog of the highest level (the main
dialog of an application).

 To create an MDI frame dialog

1. Use the dialog editor, and go to the dialog object’s attributes window.
2. Choose "MDI frame window" in the "Type" entry.

An MDI frame dialog must not contain dialog elements other than menu-bar control, submenu control, menu
item, toolbar, and toolbar item.

 To create an MDI child dialog

1. Use the dialog editor, and go to the dialog object’s attributes window.
2. Choose "MDI child window" in the "Type" entry.

An MDI child dialog:

can be moved and sized only inside the area of their MDI frame dialog;
can be maximized to the full size of the area of their MDI frame dialog;
can be minimized, after which its icon appears at the bottom of its MDI frame dialog;
can have its own menu structure, toolbar, and DIL. Those do not appear inside the child dialog but are
displayed in the MDI frame dialog when the child dialog is active. When another MDI child dialog becomes
active, the menu structure, toolbar, and DIL change at the same time;
can be arranged in a tile or cascade by setting a menu item’s attribute MENU-ITEM-TYPE to the values
"MDI Cascade" or "MDI Tile";
can have its title added to the end of an MDI-WINDOWMENU type submenu control. By choosing one of
these menu items, the corresponding MDI child dialog becomes active.

If you want to open an MDI child dialog from within an MDI frame dialog, you can, for example, create a menu
item in a menu structure of an MDI frame dialog and define a click event for the menu item. You then write the
OPEN DIALOG code for opening an MDI child dialog in the click event handler. The end user will open the
MDI child dialog from within the MDI frame dialog by clicking on the menu item, triggering the click event
handler.

Example:

 OPEN DIALOG ’MDICHILD’ #DLG$WINDOW #CHILD-ID

Copyright © Software AG 2002440

Event-Driven Programming TechniquesSharing Menu Structures, Toolbars and DILs (MDI Application)

The first operand is the name of the dialog created by the dialog editor by selecting "MDI child window" in the
"Type" selection box. The second operand is the parent of the new MDI child dialog. This must be the MDI
frame dialog. The third operand is a Natural variable defined as I4 in the dialog’s data areas. This variable
receives the dialog ID returned by the system.

Note: #DLG$WINDOW is a generated variable.

You can also open an MDI child dialog from within another MDI child dialog (open a sibling of your MDI child
dialog). Then you write a similar click-event handler as above:

Example:

 OPEN DIALOG ’MDICHILD’ #DLG$PARENT #CHILD-ID

The first and the third operands are the same as above. The second operand must be the parent of both MDI child
dialogs.

Note: #DLG$PARENT is a generated variable.

441Copyright © Software AG 2002

Sharing Menu Structures, Toolbars and DILs (MDI Application)Event-Driven Programming Techniques

Executing Standardized Procedures
For procedures frequently needed in event-driven applications, the following is available:

a set of PROCESS GUI statement actions and
a set of NGU-prefixed subprograms and dialogs in library SYSTEM.

Examples for frequently needed procedures are starting up a message box, reading the lines entered into an edit
area control, or dynamically creating dialog elements.

For your convenience, the local data areas NGULKEY1 and NGULFCT1 are automatically included in the list
of local data areas used by any new dialog.

NGULFCT1 is necessary to use the NGU-prefixed subprograms and dialogs;
NGULKEY1 lists reserved keywords to be used in any event-handler code. This enables you to refer to
certain attribute values by the more meaningful keyword rather than by the numeric IDs. It also enables you
to use meaningful dialog element names as parameters.

For more information on the PROCESS GUI statement actions, subprograms and dialogs available, and on the
parameters that can be passed, see the chapter Executing Standardized Procedures of the Natural Dialog
Components Manual.

PROCESS GUI Statement

The PROCESS GUI statement is used to perform an action. An action in this context is a procedure frequently
needed in event-driven applications.

As action-name, you specify the name of the action to be invoked.

As operand1, you specify the parameter(s) to be passed to the action. The parameters are passed in the sequence
in which they are specified.

Copyright © Software AG 2002442

Event-Driven Programming TechniquesExecuting Standardized Procedures

For the action "ADD", you can also pass parameters by name (instead of position); to do so, you use the
PARAMETERS-clause:

This clause can only be used for the action "ADD", not for any other action.

As operand2, you can specify a field to receive the response code from the invoked action after the action has
been performed.

443Copyright © Software AG 2002

PROCESS GUI StatementEvent-Driven Programming Techniques

Linking Dialog Elements to Natural Variables
In cases where you want to map database fields or other program variables to the user interface, input-field
controls and selection-box controls may be linked to Natural variables. This makes it easier to modify and query
them.

If the end user has entered data in an input-field control or a sebox control and sets the focus to another dialog
element, a leave event occurs and the content (STRING) is moved to the variable. Thus, the variable is updated.
Note that the variable will not be updated if the end user enters data and a change event occurs.

 To refresh the content of the dialog element after the linked variable has been
modified in code

Use the PROCESS GUI statement action REFRESH-LINKS.

Modifying and querying input-field controls with the ASSIGN statement would normally work like this:

Example:

 ...
 #IF-1.STRING := ’12345’
 #TEXT := #IF-1.STRING
 ...

However, you can also link a Natural variable to the input-field control or selection box control. You can also
link an indexed variable to a dialog element or an array of dialog elements.

To link a variable in Natural code, set the attribute LINKED to TRUE and modify the attribute VARIABLE by
setting it to the Natural variable name:

Example:

 ...
 #IF-1.LINKED := TRUE
 #IF-1.VARIABLE := MYVARIABLE
 ...

Copyright © Software AG 2002444

Event-Driven Programming TechniquesLinking Dialog Elements to Natural Variables

 To use the dialog editor to enter the name of the Natural variable

1. Double-click on your input-field control.
The corresponding attributes window appears.

2. Click on the "Source" push button to the right of the "String" entry.
The "Source for handlename" dialog box appears.

3. Choose "Linked variable".
4. Enter the variable name (such as MYVARIABLE in the example above).

There are two possibilities to link an indexed variable such as "MYVARIABLE (A20/1:5)":

you link a single dialog element to the indexed variable; then you specify the index, such as
"MYVARIABLE(2)" in the variable name field of the "Source for handlename" dialog box, or
you link an array of dialog elements to the indexed variable; then you do not specify an index in the variable
name field. In this case, the occurrences of the array and the index of the variable must be compatible.
"MYVARIABLE (A20/1:5)" could be linked to a one-dimensional array with up to five occurrences.

445Copyright © Software AG 2002

Linking Dialog Elements to Natural VariablesEvent-Driven Programming Techniques

Validating Input in a Dialog Element
If an input-field control or a sebox control is linked to a Natural variable, this dialog element may be checked
automatically when it loses the focus to another dialog element in the same dialog. This enables you to validate
the end user’s input. An input field control or a sebox control will not be checked when the end user clicks on a
menu item or switches to another application.

If you specify an edit mask with one of these two dialog elements, the field content is checked against this edit
mask plus the Natural data type of the linked variable.

If no edit mask is specified, the field content is checked against the Natural data type only.

There are two ways of specifying an edit mask in an input-field control or a selection box control:

Use Natural code; or
use the dialog editor.

The Natural code might look like this:

Examples:

 ...
 /* Create an input-field control
 1 #IF-1 HANDLE OF INPUTFIELD
 ...
 /* Assign the Edit Mask
 #IF-1.EDIT-MASK := ’999’

 To specify the edit mask with the dialog editor

Open the input-field control’s attribute window and use the "Edit Mask" entry.

When the field check fails, a message box comes up where the end user can choose "Retry" or "Cancel". "Retry"
means that the entered text string remains unchanged and can be corrected. "Cancel" means that the field is reset
to the current content of the linked variable.

Copyright © Software AG 2002446

Event-Driven Programming TechniquesValidating Input in a Dialog Element

Storing and Retrieving Client Data for a Dialog Element
For a number of dialog elements, the CLIENT-DATA attribute may hold an arbitrary I4 value. This may be
useful for linking data to a specific dialog element. A list-box item, for example, can receive and pass on the ISN
of a database record. The CLIENT-DATA attribute value may be changed at any time.

In Natural code, this might look like this:

Example:

 DEFINE DATA
 LOCAL
 1 #LBITEM-1 HANDLE OF LISTBOXITEM

 1 #ISN (I4)
 ...
 END-DEFINE
 ...
 READ...
 #LBITEM-1.CLIENT-DATA:= #ISN
 END-READ
 ...

Note: The CLIENT-DATA attribute of a dialog is reserved for its dialog ID.

Client data may also be set and retrieved as alphanumeric string. In this case, you use the CLIENT-KEY and
CLIENT-VALUE attributes in combination.

1. You first assign a value to the CLIENT-KEY attribute. This determines the key under which the string is to
be stored for a dialog element.

2. You then assign an alphanumeric string to the CLIENT-VALUE attribute of the dialog element.

This enables you to store a number of key/value pairs for one dialog element.

Example:

 #LB-1.CLIENT-KEY:= ’ANYKEY’
 #LB-1.CLIENT-VALUE:= ’ANYSTRING’ /* The string to be stored

 To query a dialog element for a particular string

1. You first assign a CLIENT-KEY value to the dialog element.
2. Then you query the dialog element for the corresponding CLIENT-VALUE.

If you assign a value to the CLIENT-KEY of a dialog element, this value is also valid for subsequent querying
and modifying of other dialog elements.

If you query the CLIENT-VALUE of a CLIENT-KEY and there is no such pair among the key/value pairs of the
dialog element, an empty string (’ ’) is returned.

It is advisable to reuse keys that are not needed because you may use only a limited number of keys.

Example:

447Copyright © Software AG 2002

Storing and Retrieving Client Data for a Dialog ElementEvent-Driven Programming Techniques

 #LB-1.CLIENT-KEY:= ’ANYKEY’
 IF #LB-1.CLIENT-VALUE EQ ’ANYSTRING’ THEN
 ...
 END-IF

Copyright © Software AG 2002448

Event-Driven Programming TechniquesStoring and Retrieving Client Data for a Dialog Element

Creating Dialog Elements on a Canvas Control
You can use a canvas control as a background to draw the following dialog elements on it: the rectangle, line and
graphictext controls. These dialog elements "visualize" information. You can, for example, create three or four
rectangle controls, fill them with color and change their size at runtime. This way, you can build your own bar
chart.

Once you have created a canvas control in the dialog, you can go on to create the rectangle, line and graphictext
controls in it.

Note: Graphictext controls do not repaint the background of the rectangle in which they are located. The
background of the rectangle is specified at creation time of the graphictext control. What they do repaint is only
the text specified in the text attribute.

 To create dialog elements on a canvas control

Use the PROCESS GUI statement action ADD.

The rectangle, line and graphictext controls are then displayed inside the borders of the canvas control; if they
exceed the canvas borders, they are clipped.

The following attributes are useful for controlling the behavior of the canvas control and the dialog elements on
it:

OFFSET-X and OFFSET-Y determine the x and y axis offset of the canvas control’s upper border against
the upper border of the area by which the rectangle, line or graphictext control have exceeded the canvas
control’s borders.
RECTANGLE-X, RECTANGLE-Y, RECTANGLE-W and RECTANGLE-H determine the size of a
rectangle control and its position relative to the underlying canvas control.
P1-X, P1-Y, P2-X and P2-Y determine the start position (P1xx) and the end position (P2xx) of a line control
relative to the underlying canvas control.

The following example illustrates how to create a canvas control and how to add four rectangle controls and two
line controls dynamically (these could be used as a bar chart).

Example:

449Copyright © Software AG 2002

Creating Dialog Elements on a Canvas ControlEvent-Driven Programming Techniques

Copyright © Software AG 2002450

Event-Driven Programming TechniquesCreating Dialog Elements on a Canvas Control

 /* In the dialog’s local data area, the following must be defined:
 01 #CNV1 HANDLE OF CANVAS
 01 #XAX HANDLE OF LINE
 01 #YAX HANDLE OF LINE
 01 #H1 HANDLE OF RECTANGLE
 01 #H2 HANDLE OF RECTANGLE
 01 #H3 HANDLE OF RECTANGLE
 01 #H4 HANDLE OF RECTANGLE
 01 #RESPONSE (I4)
 /* In the dialog’s AFTER-OPEN event handler, the following must be defined:
 PROCESS GUI ACTION ADD WITH
 PARAMETERS
 PARENT = #DLG$WINDOW
 TYPE = CANVAS
 HANDLE-VARIABLE = #CNV1
 RECTANGLE-X = 20
 RECTANGLE-Y = 20
 RECTANGLE-W = 200
 RECTANGLE-H = 200
 STYLE = ’F’
 END-PARAMETERS
 GIVING RESPONSE
 PROCESS GUI ACTION ADD WITH
 PARAMETERS
 PARENT = #CNV1
 TYPE = LINE
 HANDLE-VARIABLE = #YAX
 STYLE = ’S’
 P1-X = 20
 P1-Y = 20
 P2-X = 20
 P2-Y = 180
 END-PARAMETERS
 GIVING RESPONSE
 PROCESS GUI ACTION ADD WITH
 PARAMETERS
 PARENT = #CNV1
 TYPE = LINE
 HANDLE-VARIABLE = #XAX
 P1-X = 180
 P1-Y = 180
 P2-X = 20
 P2-Y = 180
 END-PARAMETERS
 GIVING RESPONSE
 PROCESS GUI ACTION ADD WITH
 PARAMETERS
 PARENT = #CNV1
 TYPE = RECTANGLE
 HANDLE-VARIABLE = #H1
 RECTANGLE-X = 20
 RECTANGLE-Y = 180
 RECTANGLE-H = 20
 RECTANGLE-W = -60
 FOREGROUND-COLOUR-NAME = BLACK
 BACKGROUND-COLOUR-NAME = RED
 END-PARAMETERS
 GIVING RESPONSE
 PROCESS GUI ACTION ADD WITH
 PARAMETERS
 PARENT = #CNV1
 TYPE = RECTANGLE

 HANDLE-VARIABLE = #H2
 RECTANGLE-X = 40
 RECTANGLE-Y = 180
 RECTANGLE-H = 20
 RECTANGLE-W = -40
 FOREGROUND-COLOUR-NAME = BLACK
 BACKGROUND-COLOUR-NAME = BLUE
 END-PARAMETERS
 GIVING RESPONSE
 PROCESS GUI ACTION ADD WITH PARAMETERS
 PARENT = #CNV1
 TYPE = RECTANGLE
 HANDLE-VARIABLE = #H3
 RECTANGLE-X = 60
 RECTANGLE-Y = 180
 RECTANGLE-H = 20
 RECTANGLE-W = -55
 FOREGROUND-COLOUR-NAME = BLACK
 BACKGROUND-COLOUR-NAME = GREEN
 END-PARAMETERS
 GIVING RESPONSE
 PROCESS GUI ACTION ADD WITH
 PARAMETERS
 PARENT = #CNV1
 TYPE = RECTANGLE
 HANDLE-VARIABLE = #H4
 RECTANGLE-X = 80
 RECTANGLE-Y = 180
 RECTANGLE-H = 20
 RECTANGLE-W = -80
 FOREGROUND-COLOUR-NAME = BLACK
 BACKGROUND-COLOUR-NAME = MAGENTA
 END-PARAMETERS
 GIVING RESPONSE

451Copyright © Software AG 2002

Creating Dialog Elements on a Canvas ControlEvent-Driven Programming Techniques

Copyright © Software AG 2002452

Event-Driven Programming TechniquesCreating Dialog Elements on a Canvas Control

Working with ActiveX Controls
ActiveX controls are third-party custom controls that you can integrate in a Natural dialog.

Terminology

ActiveX controls and Natural use different terminology in two cases:

ActiveX Control Natural

Property Attribute

Method PROCESS GUI Statement Action

How To Define an ActiveX Control

The handle of an ActiveX Control is defined similar as a built-in dialog element, but its individual aspects are
coded in double angle brackets.

Example:

 01 #OCX-1 HANDLE OF <<OCX-Table.TableCtrl.1 [Table Control]>>

In the above example, ’Table.TableCtrl.1’ is the program ID (ProgID) under which the ActiveX control is
registered in the system registry. The prefix ’OCX-’ identifies the control as an ActiveX control. ’[Table
Control]’ is an optional part of the definition and provides a readable name.

How To Create an ActiveX Control

You create an instance of an ActiveX control by using the PROCESS GUI statement action ADD. To do so, the
value of the TYPE attribute must be the ActiveX control’s ProgID prefixed with the string ’OCX-’ and put in
double angle brackets. The ProgID is the name under which the control is registered in the system registry. You
can additionally provide a readable name in square brackets. In addition to that, you can set Natural attributes
such as RECTANGLE-X as well as the ActiveX control’s properties. The property name must be preceded by
the string ’PROPERTY-’ and this combination must be put in double angle brackets. Furthermore, you can
suppress the ActiveX control’s events. To do this, the event name must be preceded by the string
’SUPPRESS-EVENT’ this combination must be delimited by double angle brackets. The value of the
SUPPRESS-EVENT property is either the Natural keyword ’SUPPRESSED’ or ’NOT-SUPPRESSED’.

453Copyright © Software AG 2002

Working with ActiveX ControlsEvent-Driven Programming Techniques

Example:

PROCESS GUI ACTION ADD
 WITH PARAMETERS
 HANDLE-VARIABLE = #OCX-1
 TYPE = <<OCX-Table.TableCtrl.1 [Table Control]>>
 PARENT = #DLG$WINDOW
 RECTANGLE-X = 44
 RECTANGLE-Y = 31
 RECTANGLE-W = 103
 RECTANGLE-H = 46
 <<PROPERTY-HeaderColor>> = H’FF0080’
 <<PROPERTY-Rows>> = 16
 <<PROPERTY-Columns>> = 4
 <<SUPPRESS-EVENT-RowMoved>> = SUPPRESSED
 <<SUPPRESS-EVENT-ColMoved>> = SUPPRESSED
 END-PARAMETERS

Accessing Simple Properties

Simple properties are properties that do not have parameters. Simple properties of an ActiveX control are
addressed like attributes of built-in controls. The attribute name is built by prefixing the property name with
’PROPERTY-’ and enclosing it in angle brackets.The properties of an ActiveX control are displayed in the
Component Browser. The following examples assume that the ActiveX control #OCX-1 has the simple
properties ’CurrentRow’ and ’CurrentCol’.

Example:

 * Get the value of a property.
 #MYROW := #OCX-1.<<PROPERTY-CurrentRow>>
 * Put the value of a property.
 #OCX-1.<<PROPERTY-CurrentCol>> := 17

The data types of ActiveX control properties are those defined by OLE Automation. In Natural, each of these
data types is mapped to a corresponding Natural data type. The following table shows which OLE Automation
data type is mapped to which Natural data type.

Copyright © Software AG 2002454

Event-Driven Programming TechniquesWorking with ActiveX Controls

OLE Automation data type NATURAL data type

VT_BOOL L

VT_BSTR A dynamic

VT_CY P15.4

VT_DATE T

VT_DECIMAL Pn.m

VT_DISPATCH HANDLE OF OBJECT

VT_ERROR I4

VT_I1 I2

VT_I2 I2

VT_I4 I4

VT_INT I4

VT_R4 F4

VT_R8 F8

VT_U1 B1

VT_U2 B2

VT_U4 B4

VT_UINT B4

VT_UNKNOWN HANDLE OF OBJECT

VT_VARIANT (any Natural data type)

OLE_COLOR (VT_UI4) B3

VT_FONT (VT_DISPATCH IFontDisp*)
HANDLE OF FONT,
HANDLE OF OBJECT (IFontDisp*)
A dynamic

VT_PICTURE (VT_DISPATCH IPictureDisp*)
HANDLE OF OBJECT (IPictureDisp*)
A dynamic

Read the table in the following way: Assume an ActiveX control #OCX-1 has a property named ’Size’, which is
of type VT_R8. Then the expression #OCX-1.<<PROPERTY-SIZE>> has the type F8 in Natural.

Note: The Component Browser displays the corresponding Natural data types directly.

Some special data types are considered individually in the following:

Colors

A property of type Color appears in Natural as a B3 value. The B3 value is interpreted as an RGB color value.
The three bytes contain the red, green and blue elements of the color, respectively. Thus for example H’FF0000’
corresponds to red, H’00FF00’ corresponds to green, H’0000FF’ corresponds to blue and so on.

Example:

455Copyright © Software AG 2002

Working with ActiveX ControlsEvent-Driven Programming Techniques

...
 01 #COLOR-RED (B3)
...
 #COLOR-RED := H’FF0000’
 #OCX-1.<<PROPERTY-BackColor>> := #COLOR-RED
...

Pictures

A property of type Picture appears in Natural as HANDLE OF OBJECT. Alternatively you can assign an Alpha
value to a Picture property. The Alpha value must then contain the file name of a Bitmap (.bmp) file.

Example (usage of Picture properties):

...
 01 #MYPICTURE HANDLE OF OBJECT
...
 * Assign a Bitmap file name to a Picture property.
 #OCX-1.<<PROPERTY-Picture>>:= ’11100102.bmp’
 *
 * Get it back as an object handle.
 #MYPICTURE := #OCX-1.<<PROPERTY-Picture>>
 *
 * Assign the object handle to a Picture property of another control.
 #OCX-2.<<PROPERTY-Picture>>:= #MYPICTURE
...

Copyright © Software AG 2002456

Event-Driven Programming TechniquesWorking with ActiveX Controls

Fonts

A property of type Font appears in Natural as HANDLE OF OBJECT. You can alternatively assign a HANDLE
OF FONT to a Font property. Additionally you can assign an Alpha value to a Font property. The Alpha value
must then contain a font specification in the form that is returned by the STRING attribute of a HANDLE OF
FONT.

Example 1 (using HANDLE OF OBJECT):

...
01 #MYFONT HANDLE OF OBJECT
...
* Create a Font object.
CREATE OBJECT #MYFONT OF CLASS ’StdFont’
#MYFONT.Name := ’Wingdings’
#MYFONT.Size := 20
#MYFONT.Bold := TRUE
*
* Assign the Font object as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #MYFONT
...

Example 2 (using HANDLE OF FONT):

...
01 #FONT-TAHOMA-BOLD-2 HANDLE OF FONT
...
* Create a Font handle.
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #FONT-TAHOMA-BOLD-2
 TYPE = FONT
 PARENT = #DLG$WINDOW
 STRING = ’/Tahoma/Bold/0 x -27/ANSI VARIABLE SWISS DRAFT/W/2/3/’
END-PARAMETERS GIVING *ERROR
...
* Assign the Font handle as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #FONT-TAHOMA-BOLD-2
...

Example 3 (using a font specification string):

...
01 #FONT-TAHOMA-BOLD-2 HANDLE OF FONT
...
* Create a Font handle.
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #FONT-TAHOMA-BOLD-2
 TYPE = FONT
 PARENT = #DLG$WINDOW
 STRING = ’/Tahoma/Bold/0 x -27/ANSI VARIABLE SWISS DRAFT/W/2/3/’
END-PARAMETERS GIVING *ERROR
...
* Assign the font specification as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #FONT-TAHOMA-BOLD-2.STRING
...

457Copyright © Software AG 2002

Working with ActiveX ControlsEvent-Driven Programming Techniques

Variants

A property of type Variant is compatible with any Natural data type. This means that the type of the expression
#OCX-1.<<PROPERTY-Value>> is not checked by the compiler, if "Value" is a property of type Variant. So
the assignments #OCX-1.<<PROPERTY-Value >> := #MYVAL and #MYVAL :=
#OCX-1.<<PROPERTY-Value >> are allowed independently of the type of the variable #MYVAL. It is
however up to the ActiveX control to accept or reject a particular property value at runtime, or to deliver the
value in the requested format. If it does not, the ActiveX control will usually raise an exception. This exception
is returned as a Natural error code to the Natural program. Here it can be handled in the usual way in an ON
ERROR block. You should check the documentation of the ActiveX control to find out which data formats are
actually allowed for a particular property of type Variant.

An expression like #OCX-1.<<PROPERTY-Value>> (where "Value" is a Variant property) can occur as source
operand in any statement. However, it can be used as target operand only in assignment statements.

Examples (usage of Variant properties):
(Assume that ’Value’ is a property of type Variant of the ActiveX control #OCX-1)

...
01 #STR1 (A100)
01 #STR2 (A100)
...
* These statements are allowed, because the Variant property is used
* as source operand (its value is read).
#STR1 := #OCX-1.<<PROPERTY-Value>>
COMPRESS #OCX-1.<<PROPERTY-Value>> ’XYZ’ to #STR2
...
* This leads to an error at compiletime, because the Variant
* property is used as target operand (its value is modified) in
* a statement other than an assignment.
COMPRESS #STR1 "XYZ" to #OCX-1.<<PROPERTY-Value>>
...
* This statement is allowed, because the Variant property is used
* as target operand in an assignment.
COMPRESS #STR1 ’XYZ’ to #STR2
#OCX-1.<<PROPERTY-Value>> := #STR2
...

Arrays

A property of type SAFEARRAY of up to three dimensions appears in a Natural program as an array with the
same dimension count, occurrence count per dimension and the corresponding format. (Properties of type
SAFEARRAY with more than three dimensions cannot be used in Natural programs.) The dimension and
occurrence count of an array property is not determined at compiletime but only at runtime. This is because this
information is variable and is not defined at compiletime. The format however is checked at compiletime.

Array properties are always accessed as a whole. So no index notation is necessary and allowed with an array
property.

Copyright © Software AG 2002458

Event-Driven Programming TechniquesWorking with ActiveX Controls

Examples (usage of Array properties):
(Assume that ’Values’ is a property of the ActiveX control #OCX-1 an has the type SAFEARRAY of VT_I4)

...
01 #VAL-L (L/1:10)
01 #VAL-I (I4/1:10)
...
* This statement is allowed, because the format of the property
* is data transfer compatible with the format of the receiving array.
* However, if it turns out at runtime that the dimension count or
* occurrence count per dimension do not match, a runtime error will
* occur.
VAL-I(*) := #OCX-1.<<PROPERTY-Values>>
...
* This statement leads to an error at compiletime, because
* the format of the property is not data transfer compatible with
* the format of the receiving array.
VAL-L(*) := #OCX-1.<<PROPERTY-Values>>
...

459Copyright © Software AG 2002

Working with ActiveX ControlsEvent-Driven Programming Techniques

Using The PROCESS GUI Statement

The methods of ActiveX controls are called as actions in a PROCESS GUI statement. The same is the case with
the complex properties of ActiveX controls (i. e. properties that have parameters). The methods and properties of
an ActiveX control are displayed in the Component Browser

Performing Methods

To perform a method of an ActiveX control the PROCESS GUI statement is used. The name of the
corresponding PROCESS GUI action is built by prefixing the method name with ’METHOD-’ and enclosing it
in angle brackets. The ActiveX control handle and the method parameters (if any) are passed in the WITH clause
of the PROCESS GUI statement The return value of the method (if any) is received in the variable specified in
the USING clause of the PROCESS GUI statement.

This means: To perform a method, you enter a statement

 PROCESS GUI ACTION <<METHOD-methodname>> WITH handlename [parameter]...
[USING method-return-operand]..

Examples:

* Performing a method without parameters:
PROCESS GUI ACTION <<METHOD-AboutBox>> WITH #OCX-1
* Performing a method with parameters:
PROCESS GUI ACTION <<METHOD-CreateItem>> WITH #OCX-1 #ROW #COL #TEXT
* Performing a method with parameters and a return value:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN

Formats and length of the method parameters and the return value are checked at compiletime against the
definition of the method, as it is displayed in the Component Browser

Getting Property Values

To get the value of a property that has parameters, the name of the corresponding PROCESS GUI action is built
by prefixing the property name with ’GET-PROPERTY-’ and enclosing it in angle brackets. The ActiveX
control handle and the property parameters (if any) are passed in the WITH clause of the PROCESS GUI
statement The property value is received in the USING clause of the PROCESS GUI statement.
This means:
To get the value of a property that has parameters, you enter a statement

 PROCESS GUI ACTION <<GET-PROPERTY-propertyname>> WITH handlename [parameter]
... USING get-property-operand

Example:

PROCESS GUI ACTION <<GET-PROPERTY-ItemHeight>> WITH #OCX-1 #ROW #COL USING #ITEMHEIGHT

Formats and length of the property parameters and the property value are checked at compiletime against the
definition of the method, as it is displayed in the Component Browser

Putting Property Values

To put the value of a property that has parameters, the name of the corresponding PROCESS GUI action is built
by prefixing the property name with ’PUT-PROPERTY-’ and enclosing it in angle brackets. The ActiveX
control handle and the property parameters (if any) are passed in the WITH clause of the PROCESS GUI
statement The property value is passed in the USING clause of the PROCESS GUI statement.

Copyright © Software AG 2002460

Event-Driven Programming TechniquesUsing The PROCESS GUI Statement

This means:
To put the value of a property that has parameters, you enter a statement

 PROCESS GUI ACTION <<PUT-PROPERTY-propertyname>> WITH handlename [parameter]
... USING put-property-operand

Example:

 PROCESS GUI ACTION <<PUT-PROPERTY-ItemHeight>> WITH #OCX-1 #ROW #COL USING #ITEMHEIGHT

Formats and length of the property parameters and the property value are checked at compiletime against the
definition of the method, as it is displayed in the Component Browser

Optional Parameters

Methods of ActiveX controls can have optional parameters. This is also true for parameterized properties.
Optional parameters need not to be specified when the method is called. To omit an optional parameter, use the
placeholder 1X in the PROCESS GUI statement. To omit n optional parameters, use the placeholder nX.

In the following example it is assumed that the method SetAddress of the ActiveX control #OCX-1 has the
parameters FirstName, MiddleInitial, LastName, Street and City, where MiddleInitial, Street and City are
optional. Then the following statements are correct:

Example:

* Specifying all parameters.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName Street City
* Omitting one optional parameter.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName 1X LastName Street City
* Omitting the optional parameters at end explicitly.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName 2X
* Omitting the optional parameters at end implicitly.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName

Omitting a non-optional (mandatory) parameter results in a syntax error.

Error handling

The GIVING clause of the PROCESS GUI statement can be used as usual to handle error conditions. The error
code can either be caught in a user variable and then be handled, or the normal Natural error handling can be
triggered and the error condition be handled in an ON ERROR block.

Example:

DEFINE DATA LOCAL
1 #RESULT-CODE (N7)
...
END-DEFINE
...
* Catching the error code in a user variable:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN GIVING #RESULT-CODE
*
* Triggering the Natural error handling:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN GIVING *ERROR-NR
...

461Copyright © Software AG 2002

Using The PROCESS GUI StatementEvent-Driven Programming Techniques

Special error conditions that can occur during the execution of ActiveX control methods are:

A method parameter, method return value or property value could not be converted to the data format
expected by the ActiveX control. (These format checks are normally already done at compiletime. In these
cases no runtime error can be expected. However, note that method parameters, method return values or
property values defined as Variant are not checked at compiletime. This applies also for arrays and for those
data types that can be mapped to several possible Natural data types.)
A COM or Automation error occurs while locating and executing a method.
The ActiveX control raises an exception during the execution of a method.

In these cases the error message contains further information provided by the ActiveX control, which can be
used to determine the reason of the error with the help of the documentation of the ActiveX control.

Using Events With Parameters

Events sent by ActiveX controls can have parameters. In the controls event-handler sections, these parameters
can be queried. Parameters passed by reference can also be modified. The events of an ActiveX control, the
names and data types of the parameters and the fact if a parameter is passed by value or by reference is all
displayed in the Component Browser.

Event parameters of an ActiveX control are addressed like attributes of built-in controls. The attribute name is
built by prefixing the parameter name with ’PARAMETER-’ and enclosing it in angle brackets. Alternatively,
parameters can be addressed by position. This means the attribute name is built by prefixing the number of the
parameter with ’PARAMETER-’ and enclosing it in angle brackets.The first parameter of an event has the
number 1, the second the number 2 and so on. These attribute names are only valid inside the event handler of
that particular event.

In the following examples it is assumed that a particular event of the ActiveX control #OCX-1 has the
parameters KeyCode and Cancel. Then the event handler of that event might contain the following statements:

Example:

* Querying a parameter by name:
#PRESSEDKEY := #OCX-1.<<PARAMETER-KeyCode>>
* Querying a parameter by position:
#PRESSEDKEY := #OCX-1.<<PARAMETER-1>>

Parameters that are passed by reference can be modified in the event handler. In the following example it is
assumed that the Cancel parameter is passed by reference and is thus modifiable. Then the event handler might
contain the following statements:

Example:

* Modifying a parameter by name:
#OCX-1.<<PARAMETER-Cancel>>:= TRUE
* Modifying a parameter by position:
#OCX-1.<<PARAMETER-2>>:= TRUE

Suppressing Events At Runtime

To suppress or unsuppress an event of an ActiveX control at runtime, modify the corresponding suppress event
attribute of the control. The name of the suppress event attribute is built by prefixing the event name with
’SUPPRESS-EVENT-’ and enclosing it in angle brackets. The events of an ActiveX control are displayed in the
Component Browser.

Copyright © Software AG 2002462

Event-Driven Programming TechniquesUsing The PROCESS GUI Statement

The following example assumes that the ActiveX control #OCX-1 has the event ColMoved.

Example:

* Suppress the event.
#OCX-1.<<SUPPRESS-EVENT-ColMoved>> := SUPPRESSED
* Unsuppress the event.
#OCX-1.<<SUPPRESS-EVENT-ColMoved>> := NOT-SUPPRESSED

463Copyright © Software AG 2002

Using The PROCESS GUI StatementEvent-Driven Programming Techniques

Working with Arrays of Dialog Elements
It is sometimes convenient to arrange dialog elements in one or two dimensions. If, for example, you want to
arrange several radio-button controls in one column, it is possible to draw the first one and specify the others as a
one-dimensional array.

 To work with arrays of dialog elements:

1. Click the "Array" button in the radio-button control’s attributes window.
The "Array Specification" dialog box appears.

2. Enter:

the number of dimensions;
the bounds of the first and second dimension, if applicable;
the spacing on the x and y axis in pixels (depending on whether the array is arranged in rows or in
columns);
the arrangement (rows or columns).

The array will now be treated as a graphical entity. Note that you will have to assign a common GROUP-ID
attribute to each radio-button control. This will enable you to treat the array as a logical entity.

For each dialog element in an array, the following attributes may be specified separately:

STRING
DIL-TEXT
BITMAP-FILE-NAME

In an event handler for an array of dialog elements, the system variable *CONTROL will denote one of the array
elements.

If a variable is selected as the source of an attribute value, the array must contain at least the index ranges of the
dialog element.

If a message file ID is specified as the source of an attribute value, consecutive messages are taken for the
array’s sequence of dialog elements.

In an array of dialog elements, you can assign one value to all dialog elements in the array using the (*) notation
or a range, such as in the following examples:

Copyright © Software AG 2002464

Event-Driven Programming TechniquesWorking with Arrays of Dialog Elements

Examples:

 #PB-1.ENABLED(*) := TRUE /*invalid
 #PB-1.ENABLED(1:3) := TRUE /*invalid

An alternative way of creating a sequence of identical dialog elements is to duplicate or copy and paste an
individual dialog element and use the grid plus the cross-hair cursor to place them.

The following example illustrates how to set the STRING attribute of occurence 2 in a one-dimensional
push-button array:

Examples:

 #PB-2.STRING(2) := ’HUGO’

465Copyright © Software AG 2002

Working with Arrays of Dialog ElementsEvent-Driven Programming Techniques

Working with Control Boxes
A control box is is used to enhance the effectiveness of the nested control support. However, control boxes have
a number of unique features that merit their separate discussion.

Control boxes are, in themselves, fairly inert controls, belonging to the same category as text constants and group
frames in that they cannot receive the focus and do not receive any mouse or keyboard input. Instead, they are
intended to act as general-purpose containers for other controls (including, possibly, other control boxes), in
order to build up a control hierarchy. In doing so, control boxes support three styles which are worthy of special
mention here:

Because it is often desirable to be able to group controls together for convenience, but not desirable that the
user actually sees the container itself, control boxes can be marked with the style ’transparent’. In this case,
no parts of the control box are drawn, and any underlying colors and controls show through.
Control boxes can also be marked with the style ’exclusive’. When an exclusive control box is made visible,
either in the dialog editor or at runtime, all other sibling control boxes that are also marked as ’exclusive’
are hidden. This applies to edit-time and runtime in a slightly different way. At runtime, setting the
VISIBLE attribute of an exclusive control box to TRUE hides all its exclusive siblings and sets their
VISIBLE attribute to FALSE. At edit-time, whenever an exclusive control box or one of its descendants is
selected, the exclusive control box becomes visible and all other exclusive siblings are hidden. However, in
this latter case the VISIBLE attribute of the controls concerned is unaffected. This implies that the exclusive
control box that is initially visible when the dialog is run is independent of the exclusive control box that
was visible at the time the dialog was last saved.
Additionally, control boxes support the ’size to parent’ style. When a container control, or the dialog itself,
is resized, all child control boxes (if any) with this style set are resized to entirely fill the parent’s client
area. The same applies when this style is first set in the dialog editor. However, it is still possible to resize
such control boxes independently of their container.

Purpose of exclusive control boxes

Exclusive control boxes, as described above, are primarily intended for situations where it is necessary to
manage several overlapping "pages" of controls occupying the same region of a dialog. Without the auto-hiding
feature which exclusive control boxes provide, it would be very difficult indeed for a user to handle this situation
in the dialog editor, as many controls would be partially or completely overlapped by others. Of course, one
could move the control to the front of the control sequence during editing, but this would be highly inconvenient,
and one would have to remember to move the control back before continuing.

Using exclusive control boxes, editing a control in this situation is as simple as selecting it. For controls that are
not currently on display, the selection can be made via the combo box in the dialog editor’s status bar or by using
the <Tab> key to walk through the controls sequentially until the target control is reached. When a control that is
a descendant of an exclusive control box is selected, that exclusive control box is made visible (if not already
so), and the previously visible exclusive control box is hidden. These changes have no impact on the generated
dialog source code and the runtime state of the dialog.

Examples of use of exclusive control boxes

Although the design of control boxes was intended to keep them as general as possible, two possible situations
where overlapping control pages are desired (and hence where exclusive control boxes become extremely useful)
are worthy of special mention here:

Wizard dialogs.
Tabbed dialogs ("Property sheets").

Copyright © Software AG 2002466

Event-Driven Programming TechniquesWorking with Control Boxes

467Copyright © Software AG 2002

Examples of use of exclusive control boxesEvent-Driven Programming Techniques

Within the rectangle highlighted in red, the so-called "wizard pages" are displayed. Within this area, we use a
2-level hierarchy of control boxes in order to implement the required functionality:

Here, #CTLBOX-1 is used as the "master" control box, which makes resizing of the pages easier later, should
this become necessary. Because all child control boxes are marked with the style ’size to parent’, we can resize
the wizard page area simply by resizing #CTLBOX-1.

The child control boxes are used to implement the actual wizard pages. #CTLBOX-2 contains the controls used
for wizard page 1, #CTLBOX-3 contains the controls for wizard page 2, and so on.

Copyright © Software AG 2002468

Event-Driven Programming TechniquesExamples of use of exclusive control boxes

Creation of the wizard pages

Creation of the wizard pages typically involves the following steps:

1. Create the top-level ("master") control box as for any other control.
2. Via its attributes window, set the ’transparent’ style.
3. Create another control box within the first one. The new control box automatically becomes a child of the

first one, because control boxes are always containers.
4. Via the attributes window for the child control box, set the ’transparent’, ’exclusive’ and ’size to parent

styles’. Because the ’size to parent’ style is set, the child control box expands to fill its container.
5. Now you can start adding the controls onto the newly-created control box, which becomes wizard page 1.
6. Adding a new wizard page is most easily achieved by selecting the child control box you wish to

immediately precede the new one, then using the clipboard copy and paste commands. Before doing the
copy, Natural will prompt you as to whether you want the child controls to be copied, too. Answer this
question with ’No’.

7. Because the newly added child control box also has the exclusive flag set, the previously displayed child
control box is hidden, and the new blank one is shown, ready for you to start adding a new set of controls as
for the first wizard page.

Switching between the wizard pages at edit-time

Switching between the pages at edit time can be most simply achieved by selecting the child control box for the
appropriate page, or one of the controls on it, from the combo box in the dialog editor’s status bar.

Creating the divider line

The divider line between the push buttons and the wizard pages can be implemented as a very thin group box (2
pixels high) with no caption. The still slightly visible sides of the group box at each end can be masked out by
using a transparent control box which comes after the group frame in the control sequence. Make sure the
’control clipping’ style for the dialog is switched on for this technique to work.

469Copyright © Software AG 2002

Creation of the wizard pagesEvent-Driven Programming Techniques

Implementing the ’Back’ and ’Next’ push buttons

Firstly, define a local variable for the dialog to store the handle of the currently active page. E.g.:

 01 #ACTPAGE HANDLE OF CONTROLBOX ...

Secondly, set this variable to the handle of the first wizard page in the AFTER-OPEN event for the dialog:

 #ACTPAGE := #CTLBOX-1.FIRST-CHILD ..

where #CTLBOX-1 is the handle of the top-level control box.
Now we are ready to implement the CLICK event code for the ’Next’ push button (#PB-NEXT). This could look
something like this:

IF #ACTPAGE.SUCCESSOR = NULL-HANDLE
 CLOSE DIALOG *DIALOG-ID
ELSE
 REPEAT
 #ACTPAGE := #ACTPAGE.SUCCESSOR
 WHILE #ACTPAGE.ENABLED = FALSE
 END-REPEAT
 #ACTPAGE.VISIBLE := TRUE
 IF #ACTPAGE.SUCCESSOR = NULL-HANDLE
 #PB-NEXT.STRING := ’Finish’
 #PB-BACK.ENABLED := FALSE
 #PB-CANCEL.ENABLED := FALSE
 ELSE
 #PB-BACK.ENABLED := TRUE
 END-IF
END-IF
..

Note that this logic does not be modified if further wizard pages are added later. Note also that any intermediate
wizard pages whose corresponding control box has been disabled are ignored. This allows certain wizard pages
to be skipped, based on previous input, by simply setting the relevant control box ENABLED attribute to
FALSE. When the last page is reached, the text for the ’Next’ push button is changed to ’Finish’.

The CLICK event code for the ’Back’ push button (#PB-BACK) is very similar:

REPEAT
 #ACTPAGE := #ACTPAGE.PREDECESSOR
 WHILE #ACTPAGE.ENABLED = FALSE
END-REPEAT
IF #ACTPAGE.PREDECESSOR = NULL-HANDLE
 #PB-BACK.ENABLED := FALSE
END-IF
#ACTPAGE.VISIBLE := TRUE
..

Note that the ’Back’ push button should be initially disabled in the dialog editor.

Clearing all controls on a wizard page

This can be conveniently achieved by selecting any (highest-level) control on the relevant page, then performing
a "Select All" from the "Edit" menu to additionally select all the controls siblings. The selected controls can then
be deleted as normal.

Copyright © Software AG 2002470

Event-Driven Programming TechniquesImplementing the ’Back’ and ’Next’ push buttons

Example 2 - a tabbed dialog

A tabbed dialog (sometimes called a "property sheet") is very similar in concept to a wizard dialog. The only
substantial difference is that instead of navigating between the control "pages" via the ’Next’ and ’Back’ push
buttons, the user directly accesses the page he wants by clicking on the appropriate tab. The control page
hierarchy can be built up and handled in the dialog editor in the same way as in the wizard dialog example
above. Several ActiveX controls are available which provide the actual tabs.

It should be noted, however, that the switching between the pages (i.e., switching between the corresponding
control boxes) is not automatic. The Natural programmer must insert code for the ActiveX event raised by a tab
switch, find out which tab is selected, and set the VISIBLE attribute of the appropriate (exclusive) control box to
TRUE. This cannot be done implicitly by Natural because each ActiveX control can implement its functionality
in any way it chooses. There is no standard event raised for a tab switch and no standard method with standard
parameters (or standard property) for determining the currently active tab.

An example tabbed dialog, making use of the Microsoft "Tab Strip" ActiveX control (V4-NEST.NS3) is shipped
as part of the Natural example libraries.

471Copyright © Software AG 2002

Example 2 - a tabbed dialogEvent-Driven Programming Techniques

Working with Error Events
When a runtime error occurs while a dialog is active, the dialog receives an error event. You can specify
event-handler code to be executed whenever this error occurs. If no error event-handler code is specified, Natural
aborts with an error message and all dialogs will be closed.

You can continue normal dialog processing after error handling by specifying ESCAPE ROUTINE at the end of
the event-handler code.

The dialog editor generates an ON ERROR statement for the event handler. If, for example, you want to prevent
the end user from closing the entire application when trying to divide an integer by zero, and the parameter ZD is
set to ON, the error event-handler code might look like this:

 COMPRESS ’Natural error’ *ERROR ’occurred.’ INTO #DLG$WINDOW.STATUS-TEXT
 ESCAPE ROUTINE

Working with a Group of Radio-Button Controls
radio-button controls are created just like push-button controls or toggle button controls; however, they are
grouped using the GROUP-ID attribute. If you define a number of radio-button controls as a group, only one
button is selected at any time. The GROUP-ID attribute provides this selection logic.

You group several radio-button controls by assigning them the same GROUP-ID value (group number) in their
attributes windows. If the end user clicks on a radio-button control, all other radio-button controls in the dialog
with the same GROUP-ID will be deselected. They will also be deselected if one radio-button control is selected
by code like the following:

Example:

 ...
 1 #RB-1 HANDLE OF RADIOBUTTON
 ...
 #RB-1.CHECKED := CHECKED /* Set the CHECKED attribute to value CHECKED
 ...

You also have to bear in mind that the end user should be able to use the keyboard for navigation inside a group
of radio-button controls: TAB selects the first radio-button control, and the arrow keys enable you to navigate
within the radio-button group. To ensure that Natural automatically allows for such navigation, the radio-button
controls must follow each other directly in the navigation sequence. If you are dynamically adding a radio-button
control via the PROCESS GUI statement action ADD, this can be achieved by specifying a value for the button’s
FOLLOWS attribute.

 To edit the navigation sequence

From the menu bar, select "Dialog > Control Sequence".

Copyright © Software AG 2002472

Event-Driven Programming TechniquesWorking with Error Events

Working with List-Box Controls and Selection-Box
Controls
list-box controls and selection box controls contain a number of items. Both the controls and the items are dialog
elements; the controls are the parents of the items.

There are two ways of creating list-box items and sebox items:

Use Natural code to create individual and multiple list-box items dynamically; or
use the dialog editor (to add single or arrays of list-box items and sebox items).

In Natural code, this may look like this:

Example:

 #AMOUNT := 5
 ITEM (1) := ’BERLIN’
 ITEM (2) := ’PARIS’
 ITEM (3) := ’LONDON’
 ITEM (4) := ’MILAN’
 ITEM (5) := ’MADRID’
 PROCESS GUI ACTION ADD-ITEMS WITH #LB-1 #AMOUNT #ITEM (1:5) GIVING #RESPONSE

You first specify the number of items you want to create, name the items, and use the PROCESS GUI statement
action ADD-ITEMS.

If you want to go through all items of a list-box control to find out which ones are selected, it is advisable to use
the SELECTED-SUCCESSOR attribute because if a list-box control contains a large number of items (100, for
example), this helps improve performance. If you use SELECTED-SUCCESSOR, you have one query instead of
100 individual queries if you use the attributes SELECTED and SUCCESSOR.

Example:

 /* Displays the STRING attribute of every SELECTED list-box item
 MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
 REPEAT UNTIL #LBITEM = NULL-HANDLE
 .../* STRING display logic
 MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM
 END-REPEAT

For performance reasons, you should not use the SELECTED-SUCCESSOR attribute to refer to the same dialog
element handle twice, because Natural goes through the list of item handles twice:

Example:

 /* Displays the STRING attribute of every SELECTED list-box item,
 /* but may be slow
 MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
 REPEAT UNTIL #LBITEM = NULL-HANDLE
 IF #LBITEM.SELECTED-SUCCESSOR = NULL-HANDLE /* Searches in the list of items
 IGNORE
 END-IF
 .../* STRING display logic
 MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM /* Searches in the list of items
 END-REPEAT /* for the second time

473Copyright © Software AG 2002

Working with List-Box Controls and Selection-Box ControlsEvent-Driven Programming Techniques

To avoid this problem, you use a second variable "#OLDITEM" besides "#LBITEM":

Example:

 /* Displays the STRING attribute of every SELECTED list-box item
 MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
 REPEAT UNTIL #LBITEM = NULL-HANDLE
 #OLDITEM = #LBITEM
 #LBITEM = #LBITEM.SELECTED-SUCCESSOR/* Searches in the list of items (once)
 IF #LBITEM = NULL-HANDLE
 IGNORE
 END-IF
 .../* Display logic using #OLDITEM.STRING
 END-REPEAT

If you retrieve the handle values of the selected items, a value other than NULL-HANDLE would normally be
returned by selected items. Such a handle value can also be returned by non-selected items if you assign
SELECTED-SUCCESSOR a value immediately before retrieving the SELECTED-SUCCESSOR value of a
non-selected item, as shown in the following example:

Example:

 ...
 PTR := #LB-1.SELECTED-SUCCESSOR
 PTR := NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR
 IF NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR = NULL-HANDLE THEN
 #DLG$WINDOW.STATUS-TEXT := ’NULL-HANDLE’
 ELSE
 COMPRESS ’NEXT SELECTION: ’ PTR.STRING TO #DLG$WINDOW.STATUS-TEXT
 END-IF
 ...

If you want to query whether a particular item in a list-box control is selected, you get the best performance by
using the SELECTED attribute:

Example:

 #DLG$WINDOW.STRING:= #LB-1-ITEMS.SELECTED(3)

 Protecting Selection-Box Controls and Input-Field Controls

To prevent an end user from typing in input data in a sebox control or input-field control, you have several
possiblities, for example:

setting the MODIFIABLE attribute to FALSE for the dialog element, or
setting session parameter AD=P, or
using a control variable (CV).

If a sebox control is protected, it is still possible to select items; only values from the item list will be displayed
in its input field. If the STRING attribute is set to a value (dynamically or by initialisation) which is not in the
item list, the value will not be visible to the end user.

Copyright © Software AG 2002474

Event-Driven Programming TechniquesWorking with List-Box Controls and Selection-Box Controls

Working with Nested Controls
It is possible to create controls as children of other controls in addition to so-called "top-level" controls, which
are direct children of the dialog. Such controls are referred to as nested controls. The parent control is referred to
as the container. We will also use the term siblings to refer to a set of child controls which all have the same
parent. Clearly, there can be many different sets of sibling controls within a control hierarchy.

Creation of a control hierarchy enables the Natural programmer to group together controls such that they can be
manipulated more easily and more efficiently within a Natural program. The following list describes the
characteristics of nested controls:

Their position is relative to the client area of the container control instead of relative to the dialog.
Their display is clipped to their respective ancestor windows. This means that the areas of the nested control
that are outside the boundary of its container are not visible. The dialog editor does not allow dragging of
nested controls outside of the container.
Nested controls are always displayed in front of their container control, regardless of their position in the
control sequence.
Nested controls are moved with their container control. This applies at both edit-time in the dialog editor
(when the container is dragged) and at runtime (when the container’s RECTANGLE-X and/or
RECTANGLE-Y attributes are modified).
Nested controls are hidden when the container control is hidden, even though the VISIBLE attribute of the
nested control remains unchanged.
Nested controls are disabled at runtime when the container control is disabled, even though the ENABLED
attribute of the nested control remains unchanged and even though the control does not become grayed.
Nested controls are deleted when the container control is deleted.

Note:
Natural does not impose any arbitrary limits on the number of levels that a control hierarchy may contain. The
level number for a particular control is displayed together with the control’s name in the dialog editor status bar
combo box.

Which control types can be containers?

Not all control types are capable of acting as a container. It is not possible to create a control as a child of an
input field, for example. There are currently three types of container control supported by Natural:

Group frames that have the (new) ’container’ style set. This can be changed in the dialog editor (via its
attributes window) after the group frame has been created. If a group frame is converted to a container, all
controls that are spatially contained within it are moved in the control hierarchy to become descendants of
the group frame. If a group frame is converted to a non-container, all direct children of the group frame are
moved up a level in the hierarchy to become siblings of the group frame.
ActiveX controls which are marked as "OLEMISC_SIMPLEFRAME" in the registry. This flag is fixed by
design for a particular ActiveX control class.
Control boxes. This control type is always a control container. Indeed, that is its entire purpose in life. See
the section "Working with Control Boxes" for more information.

475Copyright © Software AG 2002

Working with Nested ControlsEvent-Driven Programming Techniques

Creating a nested control

Nested controls are created in the dialog editor in the same way as non-nested controls are. If, during control
insertion, the initial left mouse button click is determined to be over a container control, the new control is
created automatically by Natural as a child of that container. Even before the mouse button is clicked in insert
mode, the dialog editor’s status bar is continually updated with the container-relative mouse co-ordinates as the
mouse cursor traverses the dialog.

In addition, nested controls can be indirectly created within the dialog editor when converting group frames to
containers as described above.

At runtime, nested controls can be created dynamically, via the PROCESS GUI ACTION ADD statement for the
nested control, by specifying the PARENT attribute as the handle of the required container control instead of the
handle of the dialog. The nested control’s position (RECTANGLE-X and RECTANGLE-Y attributes) should be
specified relative to the container’s client area. The client area of a control is the internal area of a control,
excluding frame components such as 3-D borders, single-pixel frames resulting from used of the ’Framed’ style,
and a control’s scroll bars.

Multiple selection, control sequence and clipboard operations

The dialog editor prohibits selection of multiple controls which do not have the same parent (i.e., are not all
siblings of each other). This applies regardless of whether multiple controls are selected via "rubber banding"
(marking of a region with the left mouse button held down) or via extended selection (holding down the <Shift>
key whilst selecting a control). However, if a selected container control is deleted, then all its direct and indirect
children (descendants) are of course implicitly deleted also, even though they are not explicitly selected. For this
reason, a clipboard cut operation always copies the selected control(s) AND all descendant controls (if any) to
the clipboard. For a clipboard copy operation, it is not clear whether to copy the container alone, or the container
plus all its descendants. In this case, a message box is displayed, allowing the user to choose between the two
options.

The pasting of controls from the clipboard uses the same control sequence (tab order) insertion position logic as
for a control created from scratch. In both cases, the new control is created at a position in the control sequence
immediately following the selected sibling (if any) plus any of its successive descendants. If a control other than
a sibling is selected, an "effective sibling" is used instead, based on the position of the (active) selected control in
the control sequence. The "active" selected control is the selected control (if any) which is highlighted using
black (rather than gray) selection handles. If no selection is active, the control is inserted into the control
sequence immediately preceding the first sibling control, or immediately after its container (or at the front of the
control sequence for top-level controls) if the container is empty. Note, however, that the control sequence is
maintained independently of the hierarchy. After a control has been created, it is possible to explicitly move any
control to any position in the control sequence via the Control Sequence option on the Dialog menu.

The position of the newly-created control in the hierarchy is determined slightly differently in these two cases. In
the case of a control being created from scratch, the container is determined by searching for the (topmost)
container at the position where the left mouse button was pressed. However, in the case of pasting from the
clipboard, we have no (X, Y)-position which we can use. In this case, the container is assumed to be the
container of the selected control(s), or the dialog itself if no controls are selected. This means that if, for
example, it is desired to copy and paste a control from one container to another, a control within the second
container must be selected prior to the paste, not the container itself. If the second container is empty, this
requires temporary creation of a dummy child control first, which can be deleted after the paste operation is
complete.

Deletion of controls also deletes any of their descendant controls.

With the introduction of nested controls, the ’Select All’ command has been changed to operate in the following
manner:

Copyright © Software AG 2002476

Event-Driven Programming TechniquesCreating a nested control

If no control is currently selected, the command selects all top-level controls.
Otherwise, all other controls that are siblings of the currently selected one(s) are additionally selected.

Thus, in the common case where only one level of hierarchy is in use, the ’Select All’ command continues, as
before, to select all dialog controls.

477Copyright © Software AG 2002

Multiple selection, control sequence and clipboard operationsEvent-Driven Programming Techniques

Working with a Dynamic Information Line
Event-driven applications are much more user-friendly when text in the dynamic information line (DIL) explains
the dialog element that currently has the focus. A dialog element has the focus if it can receive the end user’s
keyboard input.

You have two options to relate a dialog element to a DIL text:

Use the dialog editor (most likely because it is the easiest way); or
use Natural code to specify everything dynamically.

 When you use the dialog editor, you will have to go through the following steps:

1. Set the attribute HAS-DIL to TRUE for the dialog by marking the "Dyn. Info Line" entry in the "Dialog
Attributes" window.

2. Set the attribute DIL-TEXT to ’diltextstring’ for the dialog element. Push the "Source..." button to the right
of the "DIL Text:" entry in the attributes window. The window "Specify attribute Source" appears. Choose
one of the attribute sources and enter the text in the "Value" field. Ensure that ’diltextstring’ explains the
dialog element’s usage in a short phrase.

When you use Natural code, the above two steps may look like this:

Example:

 ...
 PERSDATA-DIALOG.HAS-DIL := TRUE /* Set HAS-DIL To TRUE
 #PB-1.DIL-TEXT := ’DILTEXTSTRING’ /* Assign the text string
 ...

Note: The STATUS-TEXT and the DIL-TEXT are displayed in the same area if the dialog has a status line and a
text is displayed on the DIL.

Copyright © Software AG 2002478

Event-Driven Programming TechniquesWorking with a Dynamic Information Line

Working with a Status Bar
In a similar way as the dynamic information line, the status bar makes an event-driven application more
user-friendly.

The programmer has two options to relate a dialog element to a status bar:

use the dialog editor (most likely because it is the easiest way); and
use Natural code to specify everything dynamically.

When you use the dialog editor, you will have to:

Set the attribute HAS-STATUS-BAR to TRUE for the dialog by marking the "Status Bar" entry in the
"Dialog Attributes" window. The HAS-STATUS-BAR attribute determines whether the status bar may be
modified. If HAS-STATUS-BAR is false, but HAS-DIL is true, the status bar appears, but is only used as
dynamic information line.

When you use Natural code, the above step may look like this:

Example:

 ...
 PERSDATA-DIALOG.HAS-STATUS-BAR := TRUE /* Set HAS-STATUS-BAR To TRUE
 PERSADTA-DIALOG.STATUS-TEXT := ’HELLO’ /* Set the text to ’Hello’
 ...

Note: The STATUS-TEXT and the DIL-TEXT are displayed in the same area if the dialog has a status line and a
text is displayed on the DIL.

Working with Status Bar Controls
Note:
Status bar controls are not to be confused with the traditional dialog status bar which is created by selecting the
’status bar’ check box in the Dialog Atttributes window in the Dialog Editor, or by setting the dialog’s
HAS-STATUS-BAR attribute at run-time. If you are using status bar controls, you should leave the ’status bar’
checkbox unchecked and not set the HAS-STATUS-BAR attribute.

Creating a Status Bar Control

Status bar controls are created in the dialog editor in the same way as other standard controls (such as list boxes
or push buttons) are. That is, they are either created statically in the Dialog Editor via the Insert menu or by drag
and drop from the Insert tool bar, or dynamically at run-time by using a PROCESS GUI ACTION ADD
statement with the TYPE attribute set to STATUSBARCTRL.

Unlike most other control types, status bar controls cannot be nested within another control and cannot be
created within an MDI child dialog. In an MDI application, the status bar control(s) must belong to the MDI
frame dialog.

A status bar control may have zero or more panes associated with it. Panes may be defined in the Dialog Editor
from within the status bar control’s attribute window, or at run-time by performing a PROCESS GUI ACTION
ADD statement with the TYPE attribute set to STATUSBARPANE.

479Copyright © Software AG 2002

Working with a Status BarEvent-Driven Programming Techniques

Using status bar controls without panes

A status bar control without panes offers restricted functionality, because most attributes providing access to the
enhanced functionality of status bar controls are only supported for status bar panes. If you wish to do more with
a status bar control than simply display a line of text, but don’t need to split up the status bar control into
multiple sections, you should create a single pane that occupies the full width of the status bar control.

Stretchy vs. non-stretchy panes

If panes are defined for a status bar control, it should be decided whether each pane should stretch (or contract)
when the containing dialog is resized, or whether it should maintain a constant width. The former are referred to
here as ’stretchy’ panes, and the latter as ’non-stretchy’ panes.

There is no explicit flag in the Status Bar Control Attributes window to mark a pane as stretchy or non-stretchy.
Instead, any pane defined with a width (RECTANGLE-W attribute) of 0 is implicitly assumed to be a stretchy
pane, whereas any panes with a non-zero width definition are implicitly assumed to be fixed-width panes of the
specified width (in pixels). Because the RECTANGLE-W attribute defaults to 0, all panes are initially stetchy
when defined in the Dialog Editor.

The width of a visible stretchy pane is determined by taking the total width available for all panes in the status
bar control, subtracting the widths of all visible fixed-width panes, then dividing the result by the number of
visible stretchy panes.

Note:
The total available width for all panes normally excludes the sizing gripper, implying that the last pane stops
short of the gripper, if present. However, if the status bar control has exactly one pane, and that pane is a stretchy
pane, the full width of the dialog (including any sizing gripper) is used.

Outputting text to a status bar control

Text can be output to the status bar control in one of three ways:

1. For status bar controls with panes, by setting the STRING attribute of the pane whose text is to be set.
2. By setting the STRING attribute of the status bar control itself, which is equivalent to setting the STRING

attribute of the first stretchy pane (if any) for status bar controls with panes.
3. By setting the STATUS-TEXT attribute of the dialog. This is equivalent to setting the STRING attribute of

the status bar control (if any) identified by the dialog’s STATUS-HANDLE attribute.

Note that the last method is often the most convenient for setting the message text, because it does not require a
knowledge of the status bar control or pane handles.

Example:

DEFINE DATA LOCAL
01 #DLG$WINDOW HANDLE OF WINDOW
01 #STAT-1 HANDLE OF STATUSBARCTRL
01 #PANE-1 HANDLE OF STATUSBARPANE
END-DEFINE
...
#DLG$WINDOW.STATUS-HANDLE := #STAT-1
...
#PANE-1.STRING := ’Method 1’
...
#STAT-1.STRING := ’Method 2’
...
#DLG$WINDOW.STATUS-TEXT := ’Method 3’

Copyright © Software AG 2002480

Event-Driven Programming TechniquesUsing status bar controls without panes

Note:
The Dialog Editor automatically generates code to set the STATUS-HANDLE attribute to the first status bar
control (if any). Therefore, the STATUS-HANDLE attribute only needs to be set explicitly if you are
dynamically creating status bar controls, or if you have defined more than one status bar control in a dialog, and
wish to switch between them.

Sharing a status bar in an MDI applications

Because status bar controls cannot be created for MDI child dialogs, it is convenient to not have to define
multiple status bar controls in the MDI frame dialog. An alternative method is to define just a single status bar,
and share it between each child dialog. This can be achieved as follows:

1. Define all possible panes you wish to use in your application within a single status bar control in the MDI
frame dialog.

2. Mark all panes as ’shared’.
3. Export the handles of all panes to corresponding shadow variables in a GDA, so that the MDI child dialogs

can access them directly.
4. In the COMMAND-STATUS event handler, set the VISIBLE attribute of all panes you wish to display for

that dialog to TRUE. All other panes will be automatically made invisible.

Note:
In the COMMAND-STATUS event, you must also set the ENABLED state of any commands (signals, or menu
or tool bar items which do not reference another object via their SAME-AS attribute) associated with the dialog,
otherwise they will be automatically disabled. The commands associated with the dialog are all non-shared
commands for the MDI frame and all shared commands for the active MDI child (or MDI frame, if no MDI child
dialog is active).

Pane-specific context menus

Context menus are defined for the status bar control and not per-pane. However, if you wish to ensure that the
context menu for a status bar control only appears when the user right clicks a particular pane, you can associate
a context menu with the status bar control, but suppress it if the user clicks outside that pane.

Example:

481Copyright © Software AG 2002

Sharing a status bar in an MDI applicationsEvent-Driven Programming Techniques

DEFINE DATA LOCAL
01 #CTXMENU-1 HANDLE OF CONTEXTMENU
01 #STAT-1 HANDLE OF STATUSBARCTRL
01 #PANE-1 HANDLE OF STATUSBARPANE
01 #PANE-2 HANDLE OF STATUSBARPANE
01 #PANE-3 HANDLE OF STATUSBARPANE
01 #PANE HANDLE OF STATUSBARPANE
01 #X (I4)
01 #Y (I4)
END-DEFINE
...
#STAT-1.CONTEXT-MENU := #CTXMENU-1
...
DECIDE ON FIRST *CONTROL
 ...
 VALUE #CTXMENU-1
 DECIDE ON FIRST *EVENT
 ...
 VALUE ’BEFORE-OPEN’
 /* Get click position relative to status bar control
 PROCESS GUI ACTION INQ-CLICKPOSITION WITH
 #STAT-1 #X #Y GIVING *ERROR
 /* Get pane (if any) at specified position
 PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
 #STAT-1 #X #Y #PANE
 /* Only show context menu if user clicked in second pane
 IF #PANE = #PANE-2
 #CTXMENU-1.ENABLED := TRUE
 ELSE
 #CTXMENU-1.ENABLED := FALSE
 END-IF
 ...
 END-DECIDE
 ...
END-DECIDE
...
END

Note:
If you wish to display a different context menu for different status bar panes, the menu items must be created
dynamically in the context menu’s BEFORE-OPEN Event.

Working with Dynamic Information Line and Status Bar
When you are working with both a Dynamic Information Line (DIL) and a status bar, the combination of the
HAS-DIL and HAS-STATUS-BAR attributes determines whether and when DIL-TEXT and STATUS-TEXT
values will be displayed:

HAS-DIL HAS-STATUS-BAR DIL-TEXT STATUS-TEXT

TRUE TRUE displayed displayed

TRUE FALSE - -

FALSE TRUE - displayed

FALSE FALSE - -

Copyright © Software AG 2002482

Event-Driven Programming TechniquesWorking with Dynamic Information Line and Status Bar

If HAS-DIL and HAS-STATUS-BAR are TRUE, the DIL-TEXT will overlap the STATUS-TEXT value and
vice versa, depending on which was modified last.

483Copyright © Software AG 2002

Working with Dynamic Information Line and Status BarEvent-Driven Programming Techniques

Adding a Maximize/Minimize/System Button
 To add a Maximize/Minimize/System button to your dialog

Open the "Dialog Attributes" window. Check the "System Button" or "Maximizable"or "Minimizable" entry.

When the "System Button" entry is checked, the dialog’s standard control menu is available. This includes the
control-menu box (to close the dialog), the title bar, and the Maximize and Minimize buttons.

Defining Color
You can define colors for dialogs and dialog elements. These can be foreground colors and background colors.
To do this, you use the following attributes:

BACKGROUND-COLOUR-NAME
BACKGROUND-COLOUR-VALUE
FOREGROUND-COLOUR-NAME
FOREGROUND-COLOUR-VALUE

You can assign only standard colors to the attributes ending with NAME. The attributes ending on VALUE,
however, can be assigned customized colors following the RGB model.

You can set colors:

in an attributes window, or
in event-handler code.

You can directly assign a value to the attributes ending with NAME. If you want to assign a value to an attribute
ending with VALUE, you must set the NAME attribute to the value CUSTOM. If you do not set the NAME
attribute to the value CUSTOM, the VALUE attribute is ignored.

Examples:

 #DIA.BACKGROUND-COLOUR-NAME:= MAGENTA /* Assign a value to a NAME
 /* attribute
 #DIA.BACKGROUND-COLOUR-NAME:= CUSTOM /* Set NAME to CUSTOM
 #DIA.BACKGROUND-COLOUR-VALUE:= H’FF0000’ /* Then assign Red, Green, and
 /* Blue values to the VALUE
 /* attribute (hexadecimal)

Note: You can not use all customized colors in all parts of the user interface. Colors in text, for example, must
always be monochrome.

When setting a color in an attributes window, you have three possibilities:

Use the attribute ending with NAME and leave the value at DEFAULT. You can also do this in code. Your
color will then be determined by your color settings in the windowing system.
Use the attribute ending with NAME by pulling down the list-box and choose one of the predefined colors.
Define your own color by using the attribute ending with VALUE.

 To define a color

1. Click on the "Custom" push-button control right of the "Background color" entry.
A dialog box appears.

2. Select one of the predefined colors or click on the "Define Custom Colors" push-button control. To set the
red, green, and blue values, use the cursor to select the desired color or enter a value from 1 to 253 in the

Copyright © Software AG 2002484

Event-Driven Programming TechniquesAdding a Maximize/Minimize/System Button

red, green, and blue value display fields.
3. Click on the "Add to Custom Color" push-button control. To save the newly defined color, click on the OK

button in the dialog box.
The newly defined color is now selected by default.

4. To set it, close the attributes window.

485Copyright © Software AG 2002

Defining ColorEvent-Driven Programming Techniques

Adding Text in a Certain Font
 To choose a specific font for the text assigned to a dialog element (for example, the

caption on a push-button control), you use the dialog element’s attributes window

1. Click on the "..." push-button control to the right of the "Font" entry.
A dialog box opens.

2. From the list of available fonts, select a font type, for example "Times New Roman".
3. From the list of styles available for the font type, select a font style, for example "italics".
4. From the list of sizes available for the font type and style, select a font size, for example "10".

A sample of your selected font will be displayed.
5. To set it: Close the attributes window.

Note: When adding centered or right-aligned text in a dialog element, the following minimum heights of the
dialog element apply (RECTANGLE-H attribute): 4-point font - height of 8; 8-point - 22; 12-point - 24.

Additionally, the dialog editor allows selecting a font for the whole dialog in the dialog attributes window. This
font is defined in the FONT-STRING attribute and is valid for the dialog and each of its children. A major
advantage of selecting a font for the whole dialog is that if the chosen font is too large or too small for the dialog
layout, you change the FONT-STRING attribute once instead of going through all children of the dialog.

Initially, the FONT-STRING attribute must be set as a parameter while the dialog is being created with
PROCESS GUI action ADD. If a dialog element inside the dialog contains text with no particular font assigned
to it, this text will be displayed in the font specified by FONT-STRING.

For more information on the FONT-STRING attribute and the way its value must be specified, see the Natural
Dialog Components Manual.

Copyright © Software AG 2002486

Event-Driven Programming TechniquesAdding Text in a Certain Font

Adding Online Help
From an application written with the dialog editor, you can invoke help for a specified help topic ID. Please bear
in mind that you will have to create parts of the help associated with these help topic IDs outside the Natural
development environment. You will also have to compile the help with the platform-specific help compiler.

To keep an overview of all the different help sections in an application, Natural provides you with the help
organizer. With this organizer,

you assign a help ID (HELP-ID attribute value) to a specific dialog element;
you write the help text for the associated help topic; this text is converted to a .rtf file to be processed by the
help compiler;
you optionally define the help topic’s keywords;
you optionally assign a help compiler macro to the help topic;
and optionally you add a comment for your internal documentation purposes.

 To create a help topic

1. Invoke the help organizer’s main dialog.
2. Select a particular dialog element.
3. Generate a new help topic ID.
4. Return to the help organizer main dialog.
5. Assign the generated help topic ID.
6. Enter the external definitions for the help topic ID, such as the help topic text and the topic name.
7. Return to the help organizer main dialog.
8. Go to the topic list and see whether this new help topic fits your general organization of the help file to be

created.
9. Return to the help organizer main dialog.

10. Save everything.

A dialog or dialog element can also be assigned a HELP-ID number independently of the help organizer.

 To do so

Open the corresponding attributes window. Enter a numeric value in the "Help ID" entry.

You must use the help topic’s .h file to map the numerical ID that you enter here to the corresponding help topic
ID (created by a markup in the .hlp file).

Natural expects the help file to be located in the resource (RES) subdirectory of the current library or one of the
STEPLIBs, or in the directory referred to by the environment variable NATGUI_BMP. By default, Natural
searches for a help file with the same name as the current library, but you can explicitely set the name of the help
file via the HELP-FILENAME attribute.
If no file extension is specified, Natural searches for a compiled HTML help file with the extension ".chm" first,
then (if not found) for a WinHelp help file with the extension ".hlp".
Thus, if no file extension is specified, it is possible to upgrade from using WinHelp to using HTML help without
changing the Natural program. Note, however, that the Help Organizer only supports WinHelp. If you wish to
create HTML help content, you must use an external help authoring tool to do so.

Whenever an end user presses F1 in an active dialog, Natural first queries for a file with the value of the
HELP-FILENAME attribute plus the extension ".hnn" where nn is the Natural language code. If it does not find
such a file, it queries for a file with the value of HELP-FILENAME plus the extension ".hlp"

487Copyright © Software AG 2002

Adding Online HelpEvent-Driven Programming Techniques

Whenever the dialog element has the focus and the end user presses F1, Natural jumps to this help ID.

Note: When adding online help to an application, it is recommended to assign a HELP-ID number to each dialog
and to write help texts for the dialogs. If the end user selects a dialog element to which no HELP-ID was
assigned and presses F1 to request help, help on the current dialog will come up. If no HELP-ID was assigned to
a dialog element, Natural will check whether the dialog element’s parent - the dialog - has a HELP-ID. If not,
Natural will check whether the dialog’s parent - the dialog one level higher - has a HELP-ID, and so on, until the
top-level dialog is reached.

 To build a help file

1. Go to your command promt.
2. Change to the directory referred to by the environment variable $NATGUI_BMP.
3. Issue the command "HCRTF -X helpfilename".

Note:
This assures that the directory containing HCRTF.EXE is specified in the PATH environment variable.

 To test a help file

1. Invoke a dialog in your application.
2. Press F1.

The help topic for the dialog should appear.

Alternatively, the help file can be conveniently built and tested interactively by opening the .hpj file in the Help
Compiler Workshop (HCW.EXE).

 To display help in a popup window

1. Check the Popup Help option in the dialog attributes window.
2. Run the dialog.
3. Press F1 with the focus on a control which has a help ID associated with it.

The help topic associated with the focus control should appear in a popup window.

Copyright © Software AG 2002488

Event-Driven Programming TechniquesAdding Online Help

Defining Mnemonic and Accelerator Keys
There are two ways of providing keyboard commands:

A mnemonic key is determined by an underlined character in a visible dialog element, for example a menu
item. The end user can select the menu item by pressing ALT+mnemonic key, for example ALT+A.
An accelerator key is defined in the ACCELERATOR attribute. By pressing this key, the end user causes a
double-click or click event for the dialog element regardless of whether the dialog element is visible or not,
as long as the dialog element is enabled.

Defining a Mnemonic Key

You define a mnemonic key in the dialog element’s STRING attribute by specifying "&" before the desired
character. At runtime, the character will be underlined. Example: the STRING attribute value "E&xplanation"
will be displayed as "Explanation" at runtime.

If you define a mnemonic key with a text constant control or a group frame control, and the end user presses the
mnemonic key at runtime, the next dialog element in the control sequence will get the focus. For example, if the
next dialog element after a text constant control is an input-field control, the text constant control’s mnemonic
key sets the focus to the input-field control. Whenever you disable such an input-field control at runtime, you
should also disable the corresponding text constant control.

You can define mnemonic keys in the STRING attribute of the following types of dialog elements: group frame
control, menu item, push-button control, radio-button control, text-constant control, toggle-button control,
toolbar item.

You can still display an "&" in your runtime STRING by specifying "&&". Example: "A&&B" will be displayed
as "A&B".

Note:
In recent Windows versions (e.g. Windows 2000), mnemonic characters are, by default, not underlined until the
<Alt> key is pressed. However, this new behavior can be disabled by the user, such that mnemonic characters
are always underlined. For example, this can be achieved on the English version of Windows 2000 by
unchecking the

"Hide Keyboard navigation indicators until I use the Alt key"

option under:

"Start/Control Panel/Display/Effects."

Defining an Accelerator Key

You define an accelerator key by setting the ACCELERATOR attribute to a key or a key combination for the
dialog element, for example to "F6" or "CTRL+1". If the end user presses the accelerator key, the double-click
event occurs for the dialog element, or if no double-click event is available, the click event occurs. The
accelerator key does not work if the corresponding event is suppressed, or if the dialog element is disabled.

Standard system accelerators such as "Alt+Esc", "Ctrl+Esc", "Alt+Tab" and "Ctrl+Alt+Del" can be defined as
accelerators, but do not cause the dialog element’s click or double-click event to be triggered. Instead, they cause
the associated system functionality to be invoked. The same applies to standard MDI accelerators (such as
"Ctrl+F4" and "Ctrl+F6") if used within MDI applications and to any accelerators belonging to in-place activated
servers (e.g. ActiveX controls which currently have the focus).

489Copyright © Software AG 2002

Defining Mnemonic and Accelerator KeysEvent-Driven Programming Techniques

Note that user-defined accelerator keys overwrite identical user-defined shortcut keys associated with desktop
items.

If the same accelerator key is associated with more than one dialog element, the dialog element whose click or
double-click event is triggered is not defined.

A dialog element which references another via its SAME-AS attribute inherits the accelerator of the referenced
object. For example, if a menu item references a signal, and the signal’s accelerator is "Ctrl+Alt+X", then
querying the menu item’s ACCELERATOR attribute will also return "Ctrl+Alt+X". However, the accelerator, if
pressed, will only trigger a click event for the referenced dialog element (i.e., the signal in this example).

Accelerators of the form "Alt+X", where "X" is one of the alphabetic characters, should be avoided, because
they are "reserved" for use as keyboard mnemonics.

Displaying Accelerator Keys in Menus

In order to show accelerators for menu items, the menu text needs to first be appended with a tab (h’09’)
character and then appended with the text for the accelerator. This cannot be done statically in the dialog editor’s
menu editor, because there is no way to enter a tab character into the string definition. However, the accelerators
may be appended dynamically using a generic piece of code which iterates round all menu items for a dialog.
This is illustrated by the following external subroutine, which can conveniently be called from within a dialog’s
AFTER-OPEN event.

Example:

 DEFINE DATA
 PARAMETER
 1 #DLG$WINDOW HANDLE OF WINDOW
 LOCAL
 1 #CONTROL HANDLE OF GUI
 1 #COMMAND HANDLE OF GUI
 LOCAL USING NGULKEY1
 END-DEFINE
 *
 DEFINE SUBROUTINE APPEND-ACCELERATORS
 #CONTROL := #DLG$WINDOW.FIRST-CHILD
 REPEAT UNTIL #CONTROL = NULL-HANDLE
 IF #CONTROL.TYPE = SUBMENU OR #CONTROL.TYPE = CONTEXTMENU
 #COMMAND := #CONTROL.FIRST-CHILD
 REPEAT UNTIL #COMMAND = NULL-HANDLE
 IF #COMMAND.ACCELERATOR <> ’ ’
 COMPRESS #COMMAND.STRING H’09’ #COMMAND.ACCELERATOR INTO
 #COMMAND.STRING LEAVING NO SPACE
 END-IF
 #COMMAND := #COMMAND.SUCCESSOR
 END-REPEAT
 END-IF
 #CONTROL := #CONTROL.SUCCESSOR
 END-REPEAT
 END-SUBROUTINE
 END

This dynamic technique has the advantage that the accelerator does not, in effect, have to be defined twice (i.e.,
for the ACCELERATOR and STRING attributes of the menu item).

Note that if the target language is not English, the ACCELERATOR attribute value will probably have to be
translated before being appended to the menu item string.

Copyright © Software AG 2002490

Event-Driven Programming TechniquesDisplaying Accelerator Keys in Menus

Dynamic Data Exchange - DDE

Concepts

DDE is a protocol defined by Microsoft Corp. to enable different applications to exchange data. This means that,
for example, an application written in Natural may exchange data with a spreadsheet, because they are both able
to process the DDE protocol. An application that processes the DDE protocol communicates with another DDE
application via standardized messages. One of the applications is defined as the client, the other as the server.
Client and server are holding a DDE conversation.

Note: For an overview of DDE concepts and terminology, see your Microsoft Windows documentation.

Data in a DDE conversation is identified by a three-level hierarchy:

service,
topic,
item.

A DDE conversation is established whenever a client requests a service from a DDE server. A DDE server offers
one or more services to all active applications.

For each service, a DDE server may offer any number of topics. The DDE client then requests a conversation on
a topic of a service.

In a conversation on a topic of a service, the DDE client and the DDE server uniquely identify data to be
exchanged by an item name.

A DDE server may support a number of services, which in turn may consist of a number of topics, which
themselves may contain a number of items.

With Natural, you can develop both DDE client applications as well as DDE server applications. You may, for
example, write a Natural DDE client application that requests data from a spreadsheet acting as a DDE server, or
you may write a Natural DDE server application that supplies a word processor (DDE client) with data.

To develop DDE client and DDE server applications, the following functionality is provided:

A number of NGU-prefixed subprograms in library SYSTEM; these send messages and data as defined in
the parameter data area "NGULDDE1"
a parameter data area (NGULDDE1) which describes the parameters used by the subprograms in a DDE
conversation (the "DDE-VIEW");
a DDE-Client event and a DDE-Server event which handle DDE messages.

You develop a DDE server application by reacting to the DDE-Server event and by using the
NGU-SERVER-prefixed subprograms from library SYSTEM to register services and topics and to send
messages and data to the DDE client application.

You develop a DDE client application by reacting to the DDE-Client event and by using the
NGU-CLIENT-prefixed subprograms from library SYSTEM to initiate conversations and send requests and
other DDE commands to DDE server applications.

You always have to include the parameter data area NGULDDE1 and the local data area NGULFCT1 in your
client or server dialog. (You need NGULFCT1 in order to use the NGU-prefixed subprograms in library
SYSTEM).

491Copyright © Software AG 2002

Dynamic Data Exchange - DDEEvent-Driven Programming Techniques

Developing a DDE Server Application

Registering/Unregistering Services and Topics

Before a DDE server application can be addressed by a DDE client application, it must register its service names
and all supported topics for the services. You use subprogram NGU-SERVER-REGISTER to do this for each
service/topic the DDE server supports. Registering will usually be handled in the "after open" event of the base
dialog.

When registering a service/topic for the first time, you will need to supply Natural with the dialog-ID of the
dialog that will function as the server and that will therefore receive all DDE messages from clients. This is done
by setting the DDE-VIEW.CONV-ID to the respective dialog-ID and also by setting DDE-VIEW.MESSAGE to
the string ’DLGID’.

Note that at a later time you are able to add more topics to a service or even entirely new services. You can also
make a topic unavailable by using subprogram NGU-SERVER-UNREGISTER.

Getting Data From The Client

After successful registration, it is possible that the DDE server application receives DDE messages from a DDE
client application which is establishing a conversation on a registered topic of a service.

Such messages for a DDE server are received in the DDE-Server event of the dialog. At the beginning of the
event-handler section, it is necessary to fill the DDE-VIEW with the client’s message data. This is done by using
subprogram NGU-SERVER-GET-DATA. After reading the data, it will be necessary to act based on the client
message received. The possible messages and their meaning are explained in the description of subprogram
NGU-SERVER-GET-DATA.

Sending Data To The Client

In many cases, the client message ultimately requires the server to send data to the client. This is achieved by
using the subprogram NGU-SERVER-DATA.

Terminating DDE Server Operation

Whenever DDE server operation is supposed to terminate, you use the subprogram NGU-SERVER-STOP. It
unregisters all services and terminates all active conversations. You terminate the server application with the
CLOSE DIALOG statement.

Developing a DDE Client Application

Connecting With The DDE Server Application

In order to establish a conversation with a DDE server application, a DDE client application must call the
subprogram NGU-CLIENT-CONNECT with the service and topic name of the server it wants to connect. In
order to receive the appropriate DDE events from a server, it is necessary to set the DDE-VIEW.CONV-ID to
the client’s dialog-ID and also to set DDE-VIEW.MESSAGE to the string ’DLGID’. The call will return a
unique conversation ID in DDE-VIEW.CONV-ID. This value must be set appropriately in all further
communication with the server.

Using The Services of a DDE Server Application

The client has several options to use the services of a server once a conversation has been established. It can

request data on a specific item (using NGU-CLIENT-REQUEST),
send data to the server (using NGU-CLIENT-POKE),
ask the server to execute a command (using NGU-CLIENT-EXECUTE), or

Copyright © Software AG 2002492

Event-Driven Programming TechniquesDeveloping a DDE Server Application

establish a warm or hot link to the server (using NGU-CLIENT-ADVISE-HOT,
NGU-CLIENT-ADVISE-WARM and NGU-CLIENT-ADVISE-TERM).

Receiving Data From The DDE Server Application

The DDE client will receive data or other messages from the DDE server via the client dialog’s DDE-Client
event. Whenever a server has sent a message, this event occurs. The message contents must first be retrieved
using NGU-CLIENT-GET-DATA. This will fill the DDE-VIEW structure appropriately. The client must then
determine which message (DDE-VIEW.MESSAGE) has arrived and react appropriately. The possible messages
are listed in the description of subprogram NGU-CLIENT-GET-DATA.

Disconnecting From The DDE Server Application

Whenever the client determines that the conversation is no longer needed, a call to
NGU-CLIENT-DISCONNECT must be issued to inform the server that the conversation is to be terminated.

Terminating DDE Client Operation

Whenever the client application terminates or wants to stop using DDE, it needs to call NGU-CLIENT-STOP.
This informs Natural to close all active conversations of the client and shut down DDE operation for the
application.

Return Codes

Possible return codes are described in this section:

Note: Each error-code description is not necessarily comprehensive. In these cases, the description is marked
with an asterisk (*).

Code Meaning

-1
You have specified an incorrect command or command parameter. Ensure that your DDE data area is of
the correct type and that the command is correct.

0 The function was processed correctly.

1
This value is returned when an application has attempted to initialize with the DDEML library more
than once. Check the logic of your program. Also ensure that the DDEML was exited correctly during
the last run of the program.

2
This value may be returned from the server-initialize function if you have run the program before and
not exited the DDEML correctly. It is also returned by a call-back function, whenever the requested
service failed.

 An error occurred in the underlying layer.*

3
The conversation ID referenced does not represent an active conversation. Check if you have specified
a correct service name.

4
The application could not initialize with the DDE library as the maximum number of instances are
connected.

5
The DDEML communication has not been initialized. You must initialize with the DDEML before any
DDE activity can take place.

6
Memory allocation problems encountered. This error might occur if the queue of messages for either
part in the conversation becomes too long. *

493Copyright © Software AG 2002

Return CodesEvent-Driven Programming Techniques

Code Meaning

7
A service, topic or item name was longer than 255 characters. Check if your fields are correctly
specified for DDE-VIEW and make sure that you are not attempting to place a string longer than 255
characters in any one of the above variables.

8 An error occurred in the DDE library. Contact SOFTWARE AG Support.*

9
Parameters passed to this function were illegal. This can be returned by any function call. Check your
parameters.

10
"Server Type Link" is supported but no call-back function for UNLINK is passed to the function
"PIDsRegisterTopic". *

11
An attempt was made to remove a topic for which at least one conversation is still active. This includes
trying to unregister a topic for which a conversation still exists.

12 The service/topic referenced has not been registered with the function "PIDsRegisterTopic".

13
No links were active for the DDE-VIEW.SERVICE when the NGU-Server-Data subprogram was used.
Check your service name and use the DDE-SPY in the SDK Tool Kit to see what services are available.

14 The requested type of link is invalid.

15 The transaction ID is corrupted. Check the value of your transaction ID in your DDE view.

16
The client application requested a conversation and prior to that, no function was specified to send the
data for the links.

17
An asynchronous transaction was requested, but the client application did not specify a function to send
details of the completed transaction. Such a function must be specified when the conversation is
initialized.

18
A synchronous transaction timeout expired. The amount of time taken for your transaction to complete
was longer than the TIMEOUT value in your DDE-VIEW structure. Increase the TIMEOUT value or
set it to "-1" for indefinite waiting.

19 -
24

For internal use only.

Copyright © Software AG 2002494

Event-Driven Programming TechniquesReturn Codes

Object Linking and Embedding - OLE

What Is OLE In The Natural Context?

Natural supports the following OLE technologies:

OLE Documents
OLE Visual Editing (In-place Activation)
ActiveX Controls

If you are new to OLE, it is highly recommended that you first get a basic overview by referring to one of the
various sources available. One such source, for example, is the Microsoft Win32 software development kit
documentation.

OLE Documents Support

OLE documents is a technology that integrates different Windows applications seamlessly so that the end user
can concentrate on the data rather than on handling the different applications. With OLE you can, for example,
embed a Word for Windows document in a Natural dialog. Whenever the end user enters the text container to
edit the document, the entire Word functionality is available. Thus, the end user does not have to invoke Word.

OLE Documents Support is provided by the Natural dialog element OLE container control. For more
information, see the section The OLE Container Control.

The OLE documents technology defines container and server applications. A container application is an
application that is able to use objects created by a server application. These objects are used by linking or
embedding them. In this context, Natural is the container application because the dialog editor provides an OLE
container control. A typical server application is Microsoft Word; the Word documents would then be the objects
used by Natural.

Embedding and Linking

Linking means that the content of a document is accessed via a link to an external file. This file is stored in
the server’s format (for example, a file in ".rtf" format would be stored in a file system outside Natural; the
server residing in this external file system would be Microsoft Word).
Embedding means that the content of a document is maintained in the container application and is stored in
the container’s internal format. Embedded documents are created
- either by building them from scratch in the container application;
- or by loading an external document.

Embedded objects are edited by visual editing ("in-place activation"), whereas linked objects must be opened in
an extra server window for editing.

Natural provides the dialog element OLE container control for embedding and linking documents. Furthermore,
Natural provides actions to save and load embedded documents in internal Natural format. By default, these
embedded objects in internal format are stored and retrieved in the %NATGUI_BMP% directory with a default
extension of ".neo" (Natural Embedded Object).

If you want the OLE container control to display an embedded object when the dialog
starts

1. Invoke the container control’s attribute window.
2. Set the Type entry to "Existing OLE Object".
3. Select a file specification in the Name field.

495Copyright © Software AG 2002

Object Linking and Embedding - OLEEvent-Driven Programming Techniques

If you want to display an embedded object dynamically at runtime

Use the PROCESS GUI statement action OLE-READ-FROM-FILE (see also Dialog Components Manual,
Chapter Executing Standardized Procedures).

If you want the OLE container control to display a linked object when the dialog starts

1. Invoke the container control’s attribute window.
2. Set the Type entry to "OLE Server".
3. In the "Select OLE Server or Document" dialog that comes up, select "Create From File" and select a file

specification.

If you want to display a linked object dynamically at runtime

Assign the file specification of the external document to the attribute SERVER-OBJECT of the OLE container
control (see also Dialog Components Manual, Chapter Attributes).

Visual Editing - In-place Activation

In-place activation means that the end user is able to activate a server application in the container application’s
window. Such a server application is related to an object embedded in a Natural dialog’s OLE container control.
The server application is activated by double-clicking on the OLE container control. The Natural dialog’s toolbar
and menu-bar control are then merged with the server application’s menu and toolbar. The dialog now contains
toolbar items and menu items that enable you to edit the object with the help of the server’s functionality.

ActiveX Controls Support

ActiveX controls support enables the Natural programmer to use the many third-party ActiveX controls inside a
Natural dialog. Natural enables you to access the ActiveX controls properties and methods direct and to program
the ActiveX controls events.

ActiveX controls support is provided by the Natural dialog element "ActiveX control". For more information,
see Working with ActiveX Controls.

The OLE Container Control

Creating an OLE Container Control

You can create an OLE container control either statically in the dialog editor or dynamically at runtime.

Creating an OLE Container Control in the Dialog Editor

The OLE container control enables you to integrate server applications. You can integrate server applications in
the following three ways, as indicated by the "Object Information" group frame, "Type" entry of the OLE
container control’s attributes window.

Type: New OLE object. You create an OLE container control that acts as a placeholder for the insertable
object. At runtime, your end user can create the embedded object by starting the server application. The
embedded object can then be saved as Natural embedded object (.neo file).
Type: Existing OLE object. Your end user changes an existing embedded object in the OLE container
control. The embedded object is saved as Natural embedded object (.neo file).
Type: OLE server. You create a native OLE object in your application or you create a link to an external
object.

Copyright © Software AG 2002496

Event-Driven Programming TechniquesThe OLE Container Control

 To create an OLE container control in the dialog editor

1. In the dialog editor main menu, choose "Insert", then "OLE Container".
2. Draw a rectangle by holding down the right mouse button, dragging the mouse vertically/horizontally and

releasing the mouse button.

An empty OLE container is created.

 To display a document in the OLE container when starting the dialog

1. Double-click the OLE container control to invoke the attribute window.
2. In the "Type" selection box, choose "OLE server" for linking an external document.

Or choose "Existing OLE object" for reading in an embedded object.
3. Press the "..." button to select the external or embedded object file.

Creating an OLE Container Dynamically At Runtime

Before you enter the examples in an event-handler section, declare a handle variable for the OLE container
control in the local data area of the dialog:

 01 #OCT-1 HANDLE OF OLECONTAINER

Example for creating an OLE container control at runtime and linking an external document:

 PROCESS GUI ACTION ADD WITH
 PARAMETERS
 HANDLE-VARIABLE = #OCT-1
 TYPE = OLECONTAINER
 SERVER-OBJECT = ’PICTURE.BMP’
 RECTANGLE-X = 56
 RECTANGLE-Y = 32
 RECTANGLE-W = 336
 RECTANGLE-H = 160
 PARENT = #DLG$WINDOW
 SUPPRESS-CLICK-EVENT = SUPPRESSED
 SUPPRESS-DBL-CLICK-EVENT = SUPPRESSED
 SUPPRESS-CLOSE-EVENT = SUPPRESSED
 SUPPRESS-ACTIVATE-EVENT = SUPPRESSED
 SUPPRESS-CHANGE-EVENT = SUPPRESSED
 END-PARAMETERS GIVING *ERROR

Example for creating an OLE container control at runtime and embedding a Natural embedded object:

497Copyright © Software AG 2002

The OLE Container ControlEvent-Driven Programming Techniques

 PROCESS GUI ACTION ADD WITH
 PARAMETERS
 HANDLE-VARIABLE = #OCT-1
 TYPE = OLECONTAINER
 EMBEDDED-OBJECT = ’SLIDE.NEO’
 RECTANGLE-X = 56
 RECTANGLE-Y = 32
 RECTANGLE-W = 336
 RECTANGLE-H = 160
 PARENT = #DLG$WINDOW
 SUPPRESS-CLICK-EVENT = SUPPRESSED
 SUPPRESS-DBL-CLICK-EVENT = SUPPRESSED
 SUPPRESS-CLOSE-EVENT = SUPPRESSED
 SUPPRESS-ACTIVATE-EVENT = SUPPRESSED
 SUPPRESS-CHANGE-EVENT = SUPPRESSED
 END-PARAMETERS GIVING *ERROR

Clearing or Deleting an OLE Container At Runtime

This section contains examples for clearing and deleting an OLE container at runtime.

Before you enter the examples in an event-handler section, declare a handle variable for the OLE container
control in the local data area of the dialog:

 01 #OCT-1 HANDLE OF OLECONTAINER

Example for clearing (removing the document of) the OLE container control:

 PROCESS GUI ACTION CLEAR WITH #OCT-1

Example for deleting the OLE container control:

 PROCESS GUI ACTION DELETE WITH #OCT-1

OLE Container Controls And The Dialog’s Menu Bar

The menu item attribute MENU-ITEM-OLE can have four different values which detemine if and where the
menu item in question is displayed during in-place activation of a server (see also Dialog Components Manual,
Chapter Attributes).

The menu item attribute MENU-ITEM-TYPE also has the value MT-OBJECTVERBS. This enables you to have
the OLE container control display the available server actions (command verbs) in this menu item (see also
Dialog Components Manual, Chapter Attributes).

Other OLE Container Control Functionality

While a document is displayed in an OLE container control, the end user has the possibility to activate the
default command verb of the server by double-clicking inside the OLE container control’s rectangle. This is
equivalent to executing the PROCESS GUI statement action OLE-ACTIVATE (see also Dialog Components
Manual, Chapter Executing Standardized Procedures). Furthermore, the end user can select a server command
verb by displaying a popup menu. You display this popup menu by holding down the right mouse button inside
the OLE container. Then you select the desired command verb and release the mouse button.

If the MODIFIABLE attribute of an OLE container control is set to FALSE, a double-click on the container does
not start the default command verb of the server and holding down the right mouse button does not show the
popup menu with the available server command verbs (see also Dialog Components Manual, Chapter Executing

Copyright © Software AG 2002498

Event-Driven Programming TechniquesThe OLE Container Control

Standardized Procedures).

During visual editing (in-place activation), the server uses the Natural dialog for the editing of the document.
The server does its work as a task on its own and the Natural processing continues. Thus, it is possible to execute
event code and, for example, to limit the visual editing to a certain time by specifying PROCESS GUI ACTION
OLE-DEACTIVATE, WITH #OCT-1 in a timer’s event section (see also Dialog Components Manual, Chapter
Executing Standardized Procedures).

Attributes, Events and PROCESS GUI Statement Actions

The following sections list all the attributes, events and PROCESS GUI statement actions that apply specifically
to the OLE container control.

Attributes

The OLE-specific attributes provided with the OLE container control are:

EMBEDDED-OBJECT (see Dialog Components Manual, Chapter Attributes)
ICONIZED (see Dialog Components Manual, Chapter Attributes)
OBJECT-SIZE (see Dialog Components Manual, Chapter Attributes)
SERVER-OBJECT (see Dialog Components Manual, Chapter Attributes)
SERVER-PROGID (see Dialog Components Manual, Chapter Attributes)
SUPPRESS-ACTIVATE-EVENT (see Dialog Components Manual, Chapter Attributes)
SUPPRESS-CLOSE-EVENT (see Dialog Components Manual, Chapter Attributes)
ZOOM-FACTOR (see Dialog Components Manual, Chapter Attributes)

Event

This OLE-specific event occurs when a server application is activated:

Activate event (see Dialog Components Manual, Chapter Events)

PROCESS GUI Statement Actions

The OLE-specific PROCESS GUI statement actions provided with the OLE container control are:

OLE-ACTIVATE (see Dialog Components Manual, Chapter Executing Standardized Procedures)
OLE-DEACTIVATE (see Dialog Components Manual, Chapter Executing Standardized Procedures)
OLE-GET-DATA (see Dialog Components Manual, Chapter Executing Standardized Procedures)
OLE-INSERT-OBJECT (see Dialog Components Manual, Chapter Executing Standardized Procedures)
OLE-READ-FROM-FILE (see Dialog Components Manual, Chapter Executing Standardized Procedures)
OLE-SAVE-TO-FILE (see Dialog Components Manual, Chapter Executing Standardized Procedures)
OLE-SET-DATA (see Dialog Components Manual, Chapter Executing Standardized Procedures)

499Copyright © Software AG 2002

The OLE Container ControlEvent-Driven Programming Techniques

SYSMAIN Utility - Overview
The following topics are covered below:

SYSMAIN Command
Copy Object(s)
Available XREF Options
Move Object(s)
Rename Object(s)
Delete Object(s)
List an Object
Find Object(s)
Importing Object(s) to a Library
Invoking SYSMAIN by a Subprogram

Direct Commands
Additional Keywords for Direct Commands

SYSMAIN Command
The SYSMAIN command is used to perform operations Natural objects such as copy, move, delete or import. In
most cases this can be accomplished using drag and drop or cut, copy and paste objects (see Object Operations)
within the Natural Studio environment. Also the import of objects can be done with this technique.

But one can still imagine some situations where more detailed preselections are necessary to perform an object
operation (e.g copy only objects with a specific date) which cannot be covered using drag and drop or cut, copy
and paste.
Additionally this utility can be used as a system command inside a Natural application. See also Invoking
SYSMAIN by a Subprogram.

For all object operations, the command SYSMAIN is used to display the starting dialog.

Copyright © Software AG 2002500

SYSMAIN Utility - OverviewSYSMAIN Utility - Overview

Copy Object
1. Select the "Copy" radio button and choose OK.

The "Copy" dialog box is displayed.
2. From the "Library" list box, select the source library.
3. If the source library is not in the current file, modify the database ID (DBID) and file number (FNR).
4. In the "Name" box, enter a string pattern, including one or more wildcard characters to filter the objects to

be displayed for selection. The default is " * ", all objects.
5. In the "Type" group box, select the types of objects to be copied.

If you select Programming, you can further limit the types of programming objects to be copied by pressing
the "Object Types" button. The default is all object types.

6. Select "Source" and/or "Cataloged" to copy either the source or the cataloged object module, or both.
7. For an explanation of the options available with "XREF", see Available XREF Options.
8. To display only objects for selection last saved by a particular user, enter the user ID. The default is no user

ID.
9. To display only objects for selection saved up to a particular point in time, enter a cut-off date and time. All

objects up to and including this time are displayed for selection. The default is date 0000-00-00, time 00:00.
10. From the "Library" list box, select the target library.
11. If the target library is not in the current file, modify the database ID (DBID) and file number (FNR).
12. In the "Name" box, enter a new string pattern, including one or more wildcard characters to rename the

objects selected in the filter specified above. The string cannot contain more characters than the source
string. The default is "*".
The "Confirm on Replace" toggle button is selected by default. A warning message will appear if you
attempt to copy an object to another library where an object exists with the same name. (The object in the
destination library is replaced.) You can override the warning by turning the "Confirm on Replace" function
off.
If you want to give the copied object a different name, select the "Rename Object(s)" option.

13. Choose OK.
A list box is displayed containing all objects selected in the "Copy" dialog box.

14. Choose "Select All" to select all objects in the list box, or select objects individually with the mouse pointer.
15. Choose "Copy" to copy the objects.

If the "Rename Object" option is active, the "Rename" dialog box is displayed. You can enter a new name
for the copied object. If you want to skip the current object and display the name of the next selected object,
choose "Skip".

Available XREF Options

NO
Cross-reference data are not processed, except when using the DELETE function. If a cataloged
object is deleted, SYSMAIN always deletes any existing XREF data for this object.

YES All cross-reference data are processed.

FORCE All cross-reference data are processed and the object must be documented in Predict.

DOC
All cross-reference data are processed and the object must be documented in Predict but XREF data
are not copied.

501Copyright © Software AG 2002

Copy ObjectSYSMAIN Utility - Overview

Move Object
1. Select the "Move" radio button and choose OK.

The "Move" dialog box is displayed.
2. From the "Library" list box, select the source library.
3. If the source library is not in the current file, modify the database ID (DBID) and file number (FNR).
4. In the "Name" box, enter a string pattern, including one or more wildcard characters to filter the objects to

be displayed for selection. The default is "*", all objects.
5. In the "Type" group box, select the types of objects to be moved.

If you select Programming, you can further limit the types of programming objects moved by pressing the
"Object Types" button. The default is all object types.

6. Select "Source" and/or "Cataloged" to move either the source or the cataloged object module, or both.
7. To display only objects for selection last saved by a particular user, enter the User ID of the user who last

saved the objects to be moved. The default is no User ID.
8. To display only objects for selection saved up to a particular point in time, enter a cut-off date and time. All

objects up to and including this time are displayed for selection. The default is: date 0000-00-00, time
00:00.

9. From the "Library" list box, select the target library.
10. If the target library is not in the current file, modify the database ID (DBID) and file number (FNR).
11. In the "Name" box, enter a new string pattern, including one or more wildcard characters to rename the

objects selected in the filter specified above. The string cannot contain more characters than the source
string. The default is "*".
The "Confirm on Replace" toggle button is selected by default. A warning message will appear if you
attempt to move an object to another library where an object exists with the same name. (The object in the
destination library is replaced.) You can override the warning by turning the "Confirm on Replace" function
off. If you want to give the moved object a different name, select the "Rename Object(s)" option.

12. Choose OK.
A list box is displayed containing all objects selected in the "Move" dialog box.

13. Choose "Select All" to select all objects in the list box, or select objects individually with the mouse pointer.
14. Choose "Move" to move the objects.

If the "Rename Object" option is active, the "Rename" dialog box is displayed. You can enter a new name
for the moved object. If you want to skip the current object and display the name of the next selected object,
choose "Skip".

Copyright © Software AG 2002502

SYSMAIN Utility - OverviewMove Object

Rename Object
1. Select the "Rename" radio button and choose OK.

The "Rename" dialog box is displayed.
2. From the "Library" list box, select the source library.
3. If the source library is not in the current file, modify the database ID (DBID) and file number (FNR).
4. In the "Name" box, enter a string pattern, including one or more wildcard characters to filter the objects to

be displayed for selection. The default is "*", all objects.
5. In the "Type" group box, select the types of objects to be renamed.

If you select Programming, you can further limit the types of programming objects renamed by pressing the
"Object Types" button. The default is all object types.

6. To display only objects for selection last saved by a particular user, filter the objects to be displayed for
selection, enter the User ID of the user who last saved the objects to be renamed. The default is no User ID.

7. To filter the objects to be displayed for selection, enter a cut-off date and time. All objects up to and
including this time are displayed for selection. The default is: date 0000-00-00, time 00:00.

8. In the "Name" box, enter a new string pattern, including one or more wildcard characters to rename the
objects selected in the filter specified above. The string cannot contain more characters than the source
string. The default is "*".

9. Select "Source" and/or "Cataloged" to rename either the source or the cataloged object module, or both.
The "Confirm on Replace" toggle button is selected by default. A warning message will appear if you
attempt to use the name of an existing object in the same library. You can override the warning by turning
the "Confirm on Replace" function off.

10. Choose OK.
A list box is displayed containing all objects selected in the "Rename" dialog box.

11. Choose "Select All" to select all objects in the list box, or select objects individually with the mouse pointer.
12. Choose "Rename" to rename the objects. For each object selected, a rename window is displayed.
13. In the successive rename windows, enter the new names for the objects.

503Copyright © Software AG 2002

Rename ObjectSYSMAIN Utility - Overview

Delete Object
1. Select the "Delete" radio button and choose OK.

The "Delete" dialog box is displayed.
2. From the "Library" list box, select the source library.
3. If the source library is not in the current file, modify the database ID (DBID) and file number (FNR).
4. In the "Name" box, enter a string pattern, including one or more wildcard characters to filter the objects to

be displayed for selection. The default is "*", all objects.
5. In the "Type" group box, select the types of objects to be deleted.

If you select Programming, you can further limit the types of programming objects deleted by pressing the
"Object Types" button. The default is all object types.

6. To display only objects for selection last saved by a particular user enter the User ID of the user who last
saved the objects to be deleted. The default is no User ID.

7. To display only objects for selection saved up to a particular point in time, enter a cut-off date and time. All
objects up to and including this time are displayed for selection. The default is date 0000-00-00, time 00:00.

8. Select "Source" and/or "Cataloged" to delete either the source or the cataloged object module, or both. The
"Confirm on Delete" function is selected by default.

9. Choose Object List.
A list box is displayed containing all objects selected in the "Delete" dialog box.

10. Choose "Select All" to select all objects in the list box, or select objects individually with the mouse pointer.
11. Choose "Delete" to delete the objects.

List an Object
1. Select the "List" radio button and choose OK.

The "Object Maintenance - List" dialog box is displayed.
2. From the "Library" list box, select the library.
3. If the library is not in the current file, modify the database ID (DBID) and file number (FNR).
4. In the "Name" box, enter a string pattern, including one or more wildcard characters to filter the objects to

be displayed for selection. The default is "*", all objects.
5. In the "Type" group box, select the types of objects to be listed.

If you select Programming, you can further limit the types of programming objects copied by pressing the
"Object Types" button. The default is all object types.

6. Select "Source" and/or "Cataloged" to list either the source or the cataloged object module, or both.
7. To display only objects for selection last saved by a particular user, enter the User ID. The default is no

User ID.
8. To display only objects for selection saved up to a particular point in time, enter a cut-off date and time. All

objects up to and including this time are displayed for selection. The default is date 0000-00-00, time 00:00.
9. Choose Object List.

A list box is displayed containing all objects selected in the "Object Maintenance - List" dialog box.
10. Choose "Select All" to select all objects in the list box, or select objects individually with the mouse pointer.
11. 11. Choose OK

Copyright © Software AG 2002504

SYSMAIN Utility - OverviewDelete Object

Find Object
1. Select the "Find" radio button and choose OK.

The "Find Object" dialog box is displayed.
2. From the "Library Name" list box, select the library to be searched. Enter "*" to search through all libraries.
3. If the search library is not in the current file, modify the database ID (DBID) and file number (FNR).
4. In the "Name" text box, enter the search string to be used. The default is "*", all objects.
5. In the "Type" group box, select the types of objects to be found.

If you select Programming, you can further limit the types of programming objects found by pressing the
"Object Types" button. The default is all object types.

6. To search for objects last saved by a particular user, enter the User ID. The default is no User ID.
7. To display only objects saved up to a particular point in time, enter a cut-off date and time. All objects up to

and including this time are displayed. The default is: date 0000-00-00, time 00:00.
8. Choose "Object List".

If more than one library is specified in the "Library Name" list box, a dialog box is displayed containing a
list of all libraries which meet the search criteria. Otherwise, go to Step 10.

9. From the list box, select one or more libraries to be searched for the object and choose OK.
The system searches all libraries for objects that meet the search criteria, and for each library searched,
places a list of objects found in the list box. From this dialog, you can list the objects found.

10. Choose "Select All" to select all objects in the list box, or select objects individually with the mouse pointer.
11. Choose "List" to list the objects.

Importing Objects to a Library
Use the import function whenever you need to copy objects from an external source to a Natural library. When
you import objects, the target library’s file directory FILEDIR.SAG is automatically updated to contain
information on the newly imported objects. Be aware that if you use other copy utilities (such as the Windows
File Manager) to copy objects to a Natural library, the file directory will not be updated and you can not access
the objects from that library.

Notes:
Within Natural it is possible to define object names with a "#" or a "+" character. Those objects cannot be
imported with the SYSMAIN utility, because the names, starting with "#" or "+" are encrypted in the
FILEDIR.SAG and SYSMAIN does not look into FILEDIR.SAG when importing objects. Use the Natural
Object Handler LOAD/UNLOAD command, because the Natural Object Handler is able to handle objects with
such a specific name.
If an object is imported and the object name is unknown to Natural and exists in the library, a container name
will be generated with the object name identical plus a running index.

 To import an object:

1. Select the "Import" radio button and choose OK.
The "Import Object" dialog box is displayed.

2. In the "Path" combo box of the "Source" group frame, either enter the path for the source library directly in
the text box or choose the path from the list box. A likely path might look like the following:
C:\NATAPPS\FNAT\SYSTEM\gp

3. In the "Name" text box, enter the string to be used to preselect objects from the source library. The default
is the asterisk "*", which includes all objects. Note that this is not the final selection method.

4. In the "Code" group frame, check "Source" and/or "Cataloged" to specify which types of code for of each
object are to be imported. The default is both source code and cataloged code. One type must be selected.

5. In the "Target" group frame, in the "Library" drop-down combo box, choose the name of the library to
which the objects are to be imported, or if you want to create a new library, in the text box, enter the new
library name.

6. In the "Target" group frame, enter a database ID (DBID) and file number (FNR) for the target library.

505Copyright © Software AG 2002

Find ObjectSYSMAIN Utility - Overview

7. In the "Target" group frame, in the "User ID" field, enter a User ID if necessary.
8. In the "Mode" group frame, select the option button "Report or Structure" to specify whether the imported

objects are to be used in report or structured mode.
9. In the "Confirm on Replace" toggle button, specify whether you want to be prompted when an object in the

target library has the same name as an object in the source library.
10. Choose Object List or press ENTER.
11. A second "Import Object" dialog box is displayed with a list of objects fulfilling the criteria specified in the

"Source" group frame of the previous dialog.
12. Select the individual objects to be imported or choose "Select All" to select all of the objects in the window.
13. Choose "Import" to import the selected objects to the target library. The objects are imported and the dialog

boxes are closed automatically.

Invoking SYSMAIN by a Subprogram
MAINUSER is a subprogram which allows you to perform the various SYSMAIN functions directly from any
user-written object (subroutine, program or subprogram) without going through the normal steps of invoking
SYSMAIN. Upon completion of processing of the SYSMAIN functions, the utility is terminated and control is
returned to the object from which the request was issued. MAINUSER can be used in either online or batch
mode.

MAINUSER is invoked as follows:

CALLNAT ’MAINUSER’ command error message library

The parameters are:

command
(A250)

The direct command string to be executed by SYSMAIN.

error (N4) The return code issued by SYSMAIN at the end of processing to indicate a normal end of
processing or an error.

message
(A72)

The message corresponding to the error given online.

library (A8) The name of the library containing the utility SYSMAIN; by default, this is the library
SYSMAIN. (Under UNIX, OpenVMS and Windows this parameter does not apply and is
provided for compatibility reasons only.)

An example of a callable routine is program MAINCALL in library SYSMAIN.

Direct Commands

SYSMAIN functions can be executed using direct commands issued as a parameter of the MAINUSER
subprogram.

Direct commands consist of keywords and parameters. The sequence of the direct command syntax is not
completely fixed. The rules which apply are:

Function, object type and object name must be the first three parameters of the command string.
The library or path name must be specified immediately after the FROM, IN and TO keywords. (If the
optional keyword LIBRARY or PATH is used, it must be entered between the FROM, IN or TO keyword
and the library or path name).
The WHERE clause must always follow the FROM, IN or TO keyword and the library name; the sequence
of the keywords and values within the clause can be specified in any order.
The keywords and values of the WITH clause can be specified in any order, but the WITH clause must

Copyright © Software AG 2002506

SYSMAIN Utility - OverviewInvoking SYSMAIN by a Subprogram

always be placed at the end of the command string.

Note:
In the syntax diagrams below, FM is shown instead of FROM to make the diagrams easier to read; however,
FROM can always be used as a synonym for FM and vice versa.

FIND and LIST Direct Command Syntax

The direct command syntax of the FIND and LIST functions is:

The where-clause is optional. The syntax is:

The with-clause is optional. The syntax is:

Examples:

COPY PROG1 FM TESTORD TO ORDERS DBID 1 FNR 6 REP
C PGM* WITH REP TYPE PNS FM PRODLIB TO TESTLIB

M PROG1 TO NEWLIB
MOVE STOWED * TO NEWLIB WHERE DBID 100 FNR 160 FMDATE 87-11-01 FM OLDLIB
WITH XREF Y

Since the WHERE clause and WITH clause syntax are identical for each function, they are only shown once
with the FIND and LIST command syntax above.

Examples:

FIND PROG1 IN DBID 1 FNR 6
FIND STOWED MAINMENU IN SYS* WHERE DBID 1 FNR 5
FIND ALL PROG2 IN PROD* FNR 27 DBID 1

LIST VIEW * IN lib-name
L SAVED TEST* IN lib-name TYPE PNS FNR 6
L SA TEST* TYPE PM IN lib-name FNR 6 DBID 2

507Copyright © Software AG 2002

Direct CommandsSYSMAIN Utility - Overview

COPY and MOVE Direct Command Syntax

The direct command syntax of the COPY and MOVE functions is:

Examples:

COPY PROG1 FM TESTORD TO ORDERS DBID 1 FNR 6 REP
C PGM* WITH REP TYPE PNS FM TESTLIB TO PRODLIB
COPY VIEW PERS FM OLDLIB FNR 10 TO NEWLIB FNR 16 REPLACE

M VIEW PERSONNEL FM OLDLIB FNR 20 TO NEWLIB FNR 24
M PROG1 TO NEWLIB
MOVE STOWED * FM OLDLIB WITH XREF Y TO NEWLIB WHERE DBID 100 FNR 160

DELETE Direct Command Syntax

The direct command syntax of the DELETE function is:

Examples:

D SA * IN LIBTEST TYPE GLA
DEL * TYPE PM IN TESTORD
DEL VIEW FINANCE IN TESTLIB DBID 12 FNR 27

RENAME Direct Command Syntax

The direct command syntax of the RENAME function is:

Copyright © Software AG 2002508

SYSMAIN Utility - OverviewDirect Commands

Examples:

RENAME PGM1 AS PROG1
REN PGM1 AS PROG1 FM TESTLIB DBID 1 FNR 5 TO PRODLIB DBID 2 FNR 6

Additional Keywords for Direct Commands
In addition to the keywords shown with the parameters above, the following keywords can also be used with
direct commands to specify selection criteria:

Keywords Explanation

ALL All saved and/or cataloged programming objects are selected for processing.

CAT All cataloged programming objects are selected for processing. (Any corresponding saved
programming object is not processed.)

HELP Activates online help.

IN/FM Refers to a source environment.

NOPROMPT Suppresses all prompts.

RCOP Used with direct commands to specify that a copy of the object being renamed is to be made.

SAVED All saved programming objects are selected for processing. (Any corresponding cataloged
object is not processed.)

STOWED All programming objects which are both saved and cataloged are selected for processing.

TO Refers to a target environment.

WITH Optional keyword to indicate the start of a with-clause.

WHERE Optional keyword to indicate the start of a where-clause.

. End of command. If this character is detected anywhere within a command string, all subsequent
data are ignored.

509Copyright © Software AG 2002

Additional Keywords for Direct CommandsSYSMAIN Utility - Overview

Tamino Server Extensions
The following topics are covered:

Introduction
Overview
Developing a Tamino Server Extension
Using Callbacks
Deploying a Tamino Server Extension
Installing a Tamino Server Extension
Tamino Server Extension Exsample

Introduction
Tamino allows you to develop, implement, administrate and execute Server Extensions. Tamino Server
Extensions can be used to extend the query and mapping Tamino Server functionality by adding user-defined
logic. For a description of the functionality available with Tamino Server Extensions, see the Tamino
documentation.

In order to extend the Tamino functionality, you install Tamino Server Extension Packages in Tamino databases.
These packages contain (among other data) Tamino Server Extension Objects based on COM or on Java.
Methods of these objects can then be used to extend the query or mapping functionality of the Tamino Server.

Server Extension Objects based on COM can be implemented in Natural. Please check the Natural Release Notes
for information about the Tamino version needed as a prerequisite.

Overview
This document focuses on the Natural-specific implementation details of Tamino Server Extensions and the
Natural tools and techniques used in this process. Essential background information that should help you develop
valid Server Extension Function code is contained in the Tamino documentation. You should read the
corresponding chapters of the Tamino documentation carefully before starting to develop Tamino Server
Extensions.

To develop Natural-based Server Extensions, you use the Natural Class Builder. A Tamino Server
Extension is developed as a NaturalX class that implements interfaces corresponding to a predefined
structure. To support the implementation of these interfaces, certain predefined Natural modules are
delivered with Natural.
To deploy a Natural-based Tamino Server Extension in the target environment, you use the usual Natural
deployment tools.
To register your Tamino Server Extension, you use the Natural REGISTER command.

Once you have developed, installed and registered your Natural-based Tamino Server Extension using Natural
development tools, you can assign it to a Tamino database and use it in a Tamino schema using the usual Tamino
tools. For a detailed description of the usage of these tools, see the Tamino documentation.

To select methods of your Natural-based Tamino Server Extension into a Server Extension Package and to
create a package file, you use the SXS Analyzer.
To install and administrate Server Extensions in a Tamino database, use the Server Extensions
Administration as provided by the Tamino Manager.
To assign Server Extension functions to a Tamino schema, use the Tamino Schema Editor
Server Extensions can be traced using the SXS Trace.

Copyright © Software AG 2002510

Tamino Server ExtensionsTamino Server Extensions

Developing a Tamino Server Extension
The following topics are covered.

Overview
Set the Library SYSEXSXS as Steplib
Create a New Library for your Project
Create a NaturalX Class
Create the Object Data Area
Edit the Object Data Area
Link the Connection Interface
Implement the Method Connect
Add Server Extension Functions
Save and Catalog the Class

Overview

The Natural Class Builder is used to develop a Tamino Server Extension. A Natural-based Tamino Server
Extension is a NaturalX class that implements interfaces corresponding to a predefined structure. To support the
implementation of these interfaces, certain predefined Natural modules are delivered with Natural:

An Interface Module (Copycode) containing the declaration of the Connection interface defined by Tamino.
Parameter Data Areas containing parameter definitions for the different types of Server Extension functions.

Set the Library SYSEXSXS as Steplib

When implementing a Tamino Server Extension in Natural, you can use a number of predefined Natural modules
contained in the sample library SYSEXSXS. This makes sure that your Tamino Server Extension conforms to
the interface defined by Tamino. In order to use these modules in your Tamino Server Extension project, first
define the library SYSEXSXS as steplib.

 To define the library SYSEXSXS as steplib:

1. Start the Natural Configuration Utility.
2. Select the Natural Parameter Module you are working with.
3. Choose Edit > Find to locate the parameter LSTEP.
4. Enter SYSEXSXS into the list of steplibs.
5. Save the Natural Parameter Module.
6. Close the Natural Configuration Utility.
7. Restart Natural Studio.

Create a New Library for Your Project

It is recommended to put all Natural modules for one Tamino Server Extension into one Natural library.
Therefore first create a new Natural library for your project.

 To create a new library:

1. Select "User Libraries" in the library workspace.
2. Select New in the context menu.
3. Choose a name for the library.

511Copyright © Software AG 2002

Developing a Tamino Server ExtensionTamino Server Extensions

Create a NaturalX Class

A Tamino Server Extension is implemented as a NaturalX Class. Therefore create a new class.

 To create a new class:

1. Select your library in the library workspace.
2. Select New Source > Class in the context menu.
3. Choose a name for the class.
4. Select Save in the context menu.
5. Choose a name for the class module.

Create the Object Data Area

An Object Data Area in a NaturalX class is used to contain variables that shall keep their value during the
lifetime of an instance of the Tamino Server Extension.

 To create an Object Data Area and link it to your class:

1. Select your class in the library workspace.
2. Select New > Object Data Area in the context menu.
3. Choose a name for the Object Data Area.

Edit the Object Data Area

The Object Data Area of a Tamino Server Extension should at least contain an object handle to hold a reference
to the Tamino callback object during the lifetime of an instance of your Tamino Server Extension. The Tamino
callback object is passed by Tamino to the Server Extension when it loads the Extension. You can use the
methods of the callback object to call Tamino functionality from inside your Tamino Server Extension functions.

 To add an object handle for the callback object to your Object Data Area:

1. Doubleclick the Object Data Area in the library workspace to edit it.
2. In the Data Area Editor select Insert > Handle.
3. Choose a name for the object handle (e. g. CALLBACK).
4. Select "Object" as handle type.
5. Click the Add button.
6. Click the Quit button.
7. If you so wish, add further variables to the Object Data Area as required by your Server Extension.
8. Close the Data Area Editor and save the Object Data Area.

Link the Connection Interface

A Tamino Server Extension must implement the Connection interface ISXSConn. This interface is declared in
the interface module ICONN-C in the library SYSEXSXS. To be able to locate the interface module, you must
have defined the library SYSEXSXS as steplib. Link this interface module to your class.

 To link the interface module to your class:

1. Select your class in the library workspace.
2. Select Link > Interface Module in the context menu.
3. Select the interface module ICONN-C in library SYSEXSXS.

Copyright © Software AG 2002512

Tamino Server ExtensionsCreate a NaturalX Class

Implement the Method Connect

The method Connect of the ISXSConn should store a handle to the callback object in the Object Data Area. This
allows the Server Extension Functions to access Tamino functionality.

 To implement the method Connect:

1. Fully expand the branch "Interfaces" of your class in the library workspace.
2. Select the subprogram node "CONNECT". This is the default name for the subprogram that will implement

the method Connect.
3. If you so wish, rename the subprogram to a name of your choice by selecting Rename in the context menu.
4. Doubleclick the subprogram node to create and edit the method subprogram.

The implementation of the Connect method must include both the Object Data Area of the class and the
Parameter Data Area of the method Connect. The body of the method must assign the Callback object handle
from the Parameter Data Area to the corresponding object handle defined in the Object Data Area, as shown in
the example below.

You can also add further initialization code to the method Connect as required by your Server Extension.

Add Server Extension Functions

You can now start to add your own Server Extension Functions to the class. First you will create a new interface
for your class to contain the Server Extension Functions. Then you will add the individual functions to that
interface.

513Copyright © Software AG 2002

Implement the Method ConnectTamino Server Extensions

 To create a new interface:

1. Select the node "Interfaces" of your class in the library workspace.
2. Select New in the context menu.
3. Choose a name for the interface.

 To create a new Server Extension Function:

1. Select your interface in the library workspace.
2. Select New > Method in the context menu.
3. Choose a name for the method.
4. Select the method
5. Select Link > Parameter Data Area.

Tamino distinguishes different types of Server Extension Functions. Depending on the type of Server Extension
Function to be implemented, choose the corresponding Parameter Data Area:

Function Data

Map In function: Parameter Data Area SXSMI-A

Map Out function: Parameter Data Area SXSMO-A

On Delete function: Parameter Data Area SXSDL-A

Event function: Parameter Data Area SXSEV-A

Query function: Parameter Data Area SXSQU-A

These Parameter Data Areas are contained in the library SYSEXSXS. To be able to locate the Parameter Data
Areas, you must have defined the library SYSEXSXS as steplib.

Note:
The Parameter Data Area SXSQU-A is just an example. Query functions can have user-defined parameters. Thus
it is not possible to define a common Parameter Data Area for them. If you want to create a query function,
please consult the Tamino documentation and check which parameter types are allowed in query functions. Then
create your own Parameter Data Area in your project library that matches the needs of your query function.

 To implement the Server Extension Function:

1. Select the subprogram node that represents the method implementation.
2. If you so wish, rename the subprogram to a name of your choice by selecting Rename in the context menu.
3. Doubleclick the subprogram node to create and edit the method subprogram.

The implementation of the method must include both, the Object Data Area of the class and the Parameter Data
Area assigned to the method. The body of the method contains the coding specific to the Server Extension
Function.

Copyright © Software AG 2002514

Tamino Server ExtensionsAdd Server Extension Functions

Close the Program Editor and save the subprogram.

To add further Server Extension functions, repeat " To create a new Server Extension Function ".

Save and Catalog the Class

Finally save the class and recatalog the whole project library.

1. Select your class in the library workspace.
2. Select Save in the context menu.
3. Select your library in the library workspace
4. Select Cat All in the context menu.

Using Callbacks
Tamino callbacks are interfaces of the Tamino Server that can be used in a Server Extension Function. They
enable access to both the various databases that can be administrated by the Tamino Server and system
information available in the running Tamino Server. To use a Callback function from within a Natural based
Tamino Server Extension, do the following:

Consult the Tamino documentation to find out the parameters of the callback function you wish to use.
In the Object Data Area of the NaturalX class that implements your Tamino Server Extension you have
defined an object handle as a reference to the callback object. Send a corresponding method call to this
object handle.

515Copyright © Software AG 2002

Using CallbacksTamino Server Extensions

Deploying a Tamino Server Extension
Having developed the NaturalX class that implements your Tamino Server Extension, deploy it into the target
environment with the usual Natural deployment tools, for instance the Object Handler. A Tamino Server
Extension must be installed on the same machine where the Tamino server is running.

Register the class in the target environment under an arbitrary COMSERVERID. If necessary, see the NaturalX
documentation on COMSERVERIDs and the different options of the REGISTER command.

Installing a Tamino Server Extension
Installing a Natural-based Tamino Server Extension is the same procedure as installing any COM-based Tamino
Server Extension:

1. Use the SXS Analyzer to create a Server Extension Package. In the SXS Analyzer, select as the file to
analyze the type library of your NaturalX class. As with any NaturalX class, the type library is located in
the directory <natdir> \<natvers>\Natural\Etc\<comserverid>\<classname>\<version>, where <natdir>
is the Natural installation directory, <natvers> the installed Natural version, <comserverid> the
COMSERVERID under which the class was registered, <classname> the class name and <version> the
class version (currently always "v1"). Proceed as usual with the SXS Analyzer to create a Server Extension
Package.

2. Install the Server Extension Package into a Tamino database using the Server Extensions Administration as
provided in the Tamino Manager.

3. Afterwards you can use the Tamino Server Extension as usual, for instance in XQuery functions or to map
XML sub-documents in the Tamino Schema Editor.

Tamino Server Extension Sample
The Natural sample library SYSEXSXS contains a simple Natural-based Tamino Server Extension as a
programming example. The sample works on the Employees schema and maps parts of the schema, the salary
data, on Server Extension Functions. These functions work as follows:

Whenever an Employee element is inserted into the schema, the salary data of this Employee is passed to
the Map In function SXSStoreToFile. This function creates a file in the TEMP directory and stores the data
into the file.
Whenever an Employee element is read from the schema, the salary data of this Employee is requested from
the Map Out function SXSRetrieveFromFile. This function opens the corresponding file in the TEMP
directory and reads the data from the file.
Whenever an Employee element is deleted from the schema, the On Delete function SXSDeleteFile is
called. This function deletes the corresponding file in the TEMP directory.

The sample Employees schema and some sample data are contained in the RES subdirectory of the sample
library SYSEXSXS.

The sample can be driven comfortably using the Tamino DOM Demo application contained in the sample library
SYSEXINO. To run the sample Tamino Server Extension, proceed as follows:

1. Install the sample Tamino Server Extension in a Tamino database as described above in "Deploying a
Tamino Server Extension" and "Installing a Tamino Server Extension".

2. Start the dialog MENU in the library SYSEXINO.
3. Set the Tamino URL to your Tamino database.
4. Enter "NATSXSDemoData" as collection name.
5. Execute "Define Tamino Schema" and select the schema "EmployeeSXSSchema.tsd" from the RES

subdirectory of the sample library SYSEXSXS.

Copyright © Software AG 2002516

Tamino Server ExtensionsDeploying a Tamino Server Extension

6. Execute "Load Tamino Data" and select the data file "EmployeeSXSData.xml" from the RES subdirectory
of the sample library SYSEXSXS.

7. Execute the sample queries and update records. Note that part of the Employee data (the salary data) is now
handled by the Tamino Server Extension.

8. Delete the Employee data.
9. Delete the Employee schema.

517Copyright © Software AG 2002

Tamino Server Extension SampleTamino Server Extensions

XML Toolkit
The XML Toolkit enables developers to process XML documents within Natural.

The toolkit includes a wizard which generates Natural source code and provides the following features:

Mapping Natural data definitions to DTDs;
Serializing a Natural data structure and assigning its contents to an XML file;
Mapping DTDs to Natural data definitions;
Parsing an XML file and assigning its contents to a Natural data structure.

The wizard and the context-related help texts are included in the library SYSEXXT.

Copyright © Software AG 2002518

XML ToolkitXML Toolkit

	User's Guide - Overview
	Natural Studio - Fundamentals
	Starting/Terminating Natural
	Starting Natural
	Starting a Natural Online Session
	How to Proceed after Logon
	Starting a Natural Batch Session

	Terminating Natural
	Terminating a Natural Online Session
	Terminating a Natural Batch Session

	Configuring Your Natural Environment
	Changing Default Settings
	Suppressing the Natural Startup Map
	Defining Your Own Logon Library
	Changing the Termination Method

	Using Objects and Shared Resources
	What is a Natural Object?
	Object Types
	Changing an Object's Type

	Object Visualisation
	Object Naming Conventions
	Object Editors
	Types of Object Editors
	Invoking an Object Editor

	Object Commands
	Object Operations
	Creating an Object
	Copying or Moving Objects - Rules
	Using Drag and Drop / Cut, Copy and Paste
	Valid Source Nodes
	Valid Target Nodes

	Copying an Object
	Deleting Objects
	Exporting Objects
	Importing Objects
	Moving Object
	Listing Objects
	Printing Objects
	Renaming an Object
	Object Retrieval
	To start the "Find Objects" dialog
	"Location" Sheet
	"Contents" Sheet
	"Advanced" Sheet

	Saving an Object
	Saving an Object with Another Name

	Stowing an Object

	Shared Resources

	Using Natural Libraries
	Logon to a Library
	Automatic Logon to a Library
	Manual Logon to a Library

	Library Types
	Library Naming Conventions
	Library Commands
	Library Operations
	Creating a New Library
	Copying or Moving a Library
	Deleting a Library
	Renaming a Library

	Library Limit
	Example Library for New Features

	Using Workspace Options
	Setting Workspace Options
	Display Success Messages
	Display Delete Messages
	Display Replace Messages
	Exit Prompt
	Show Full Cat All Result List
	Perform Automatic Refresh
	Enable Plug-ins
	Terminal Emulation

	Using Natural Output Window Options
	Output Window Features
	Customizing the Mininimize Icon
	Viewing/Modifying Output Window Profile Settings
	Output Window General Profile
	Activate report page buffer
	Display input fields with frame
	Display PF-key buttons with number
	Display more prompt
	Disable ESC key
	Disable help menu
	Fixed fonts only

	Output Window Color Profile
	Output Window Font Profile
	Invoking the Front Profile Dialog
	Accepting Changes made to the Profile Settings

	Using Session Parameters
	Setting Session Parameters
	Session Parameters Grouped by Function
	Report Parameters
	Limit Settings
	Character Assignments
	Compiler Options
	Field Appearance
	Error Handling
	Data Representation

	Accessing Tools
	Invoking Development Tools
	Development Tools Available
	Application Shell
	Component Browser
	Debugger
	Error Messages
	Frame Gallery
	Natural Reporter
	Object Handler
	Unlock Objects
	User Exits

	Arranging Your Natural Environment
	Displaying the Natural Version of Your Environment
	Working with Dockable/Floatable and MDI Windows
	Dockable and Floatable Windows
	MDI Windows

	Using Online Help
	Starting Online Help
	Displaying the System Command List
	Displaying Error Message Texts

	Natural Studio - Introduction
	Natural Studio - Features and Components
	Natural Studio - Features
	Natural Studio - Main Components

	Library Workspace
	Switching the Library/Application Workspace On or Off
	Local Environment
	Remote Environment
	Logical View
	Flat View
	File View

	Multiple Document Interface Area
	List View
	Opening a List View
	List View Operations

	Editors Available in MDI Area
	MDI Window Navigation Accelerators

	Toolbars and Menus
	Introduction
	Hiding a Toolbar
	Positioning a Toolbar

	Results Window
	Switching the Results Window On and Off
	Using the Results Window

	Results Interface
	Purpose of the Results Interface
	Results Window Control Bar Access
	Tab Handling
	Image Handling
	Context-Menu Handling
	Command Handling
	Column Handling
	Row Handling
	Data Handling
	Selection Handling

	Command Line
	Using the Command Line
	Display or Hide the Command Line
	Associate an Object with the Command Line

	Status Bar
	Purpose of the Status Bar
	Switching the Status Bar On or Off
	Status Bar Option

	Context Menus
	Accelerators
	Accelerators Grouped by Categories
	Generally Available Accelerators
	Dialog Editor Accelerators
	Program Editor Accelerators
	Data Area Editor Accelerators

	Alphabetical Overview of Accelerators

	Commands
	Purpose of Natural Commands
	Issuing Natural Commands

	Manual Refresh
	Purpose of a Manual Refresh
	Performing a Manual Refresh

	Customizing
	Commands
	Editing a Toolbar
	Adding User-Defined Commands to a Toolbar
	Removing Commands from a Toolbar
	Rearranging Commands in the Toolbar

	Toolbars
	Invoking the Toolbars Dialog Box
	Creating a Toolbar
	Selecting a Toolbar
	Removing a Toolbar

	Keyboards
	Changing Accelerator Key Assignments
	Removing a Key Assignment
	Resetting Your Personal Key Assignments

	User Commands
	Invoking the User Commands Dialog
	Defining a User Command
	Adding a User Command to an Existing Toolbar

	Tutorial - Getting Started with Natural
	Session 1 - Creating and Modifying a Program
	
	Step 1
	Step 2
	Step 3
	Edit PGM01
	Create PGM01
	Step 4
	Step 5

	Session 2 - Creating and Editing a Map
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11
	Step 12
	Step 13
	Step 14

	Session 3 - Checking and Running a Program
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	Session 4 - Creating a Local Data Area
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8

	Session 5 - Creating a Global Data Area
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Session 6 - Creating an External Subroutine
	
	Step 1
	Step 2
	Step 3
	Step 4

	Session 7 - Invoking a Subprogram
	
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Class Builder
	Introduction
	What is the Class Builder?
	Which Classes can be handled by the Class Builder?
	When is a Class saved?
	Class Comments

	Class Builder Interface
	Logical View
	Library Workspace
	List Views
	Class List View
	Object Data Group List View
	Local Data Group List View
	Interface Modules Group List View
	Interface Module List View
	Interfaces Group List View
	Interface List View
	Properties Group List View
	Methods Group List View
	Method Parameter Data Group List View

	Flat View
	Library Workspace
	List Views
	Class List View
	Interface Module List View
	Interface List View

	Class Builder Nodes
	Class Nodes
	Types
	Commands

	Object Data Nodes
	Types
	Commands

	GUID Local Data Nodes
	Types
	Commands
	Interface Module Nodes
	Commands

	Interface Nodes
	Types
	Commands

	Property Nodes
	Types
	Commands

	Method Nodes
	Types
	Commands

	Method Implementation Nodes
	Commands

	Method Parameter Data Nodes
	Types
	Commands

	Node Properties
	General
	Class
	Object and Local Data Area
	Inline Data Definition
	Interface Module
	Interface
	Method
	Implementation
	Parameter Data Area
	Property

	Comments
	Identification
	Settings
	Definition

	Adding Class Components
	Link
	Link to Class
	Link to Method

	New
	New Class
	Library Workspace
	List View

	New Object Data Area
	Library Workspace
	List View

	New Interface Module
	Library Workspace
	List View

	New Interface
	Library Workspace
	List View

	New Method
	Library Workspace
	List View

	New Property

	Renaming Class Components
	Removing Class Components
	Unlink
	Delete

	Editing Class Components
	Classes
	Save
	Save As
	Cat
	Stow

	Natural Objects
	Other Class Components

	Using Interfaces from Several Classes
	Creating a new Interface Module
	Linking an existing Interface Module
	Unlinking an Interface Module
	Interface Nodes

	Locking Concept
	Locking of Classes
	Locking of Interface Modules

	Tutorial
	New class
	Linking Object Data
	Creating an Interface
	Creating Methods
	Creating Properties
	Using an Interface Module
	Linking a GUID Local Data Area
	Activation Policy
	Save and Stow Class
	Register

	Glossary
	External Interface
	Internal Interface
	Method Implementation
	Property Implementation

	Program Editor
	Modifying Program Contents
	Selecting Text
	Copying Text
	Cutting Text
	Pasting Text
	Deleting Text
	Undoing/Redoing Text Changes
	Renumbering a Program

	Finding Source Contents
	Searching for Source Text
	Searching for and Replacing Source Text
	Repeat Replace

	Searching for a Line Number

	Editing/Listing Referenced Natural Objects
	Splitting the Editor Window
	Jumping between Split Screens

	Expanding/Collapsing Object Listings
	Making Listings Expandable/Collapsible
	Expand/Collapse: Session Level

	Collapsing and Expanding Program Structures
	Additional Information

	Recording/Replaying Keystrokes
	Using Context-Sensitive Help
	Syntax Help
	Help for Statements
	Syntax Default Colors

	Setting Editor Options
	
	Status Bar
	Line Numbers
	Syntax coloring
	Vertical scroll bar
	Horizontal scroll bar
	Tabs
	Expand/Collapse
	Open collapsed
	Max. number of actions
	Max. memory size
	Alarm
	Insert Alignment
	Renumber Before Save

	Syntax Coloring
	Font Definition
	Status Bar Information
	Line: x of y
	Col
	Size
	Structured or Report
	Modified
	INS or OVR

	Map Editor
	Inserting Map Fields and Menus
	Modifying Map Contents
	Selecting Fields
	Deselecting Fields
	Copying Fields
	To copy a field

	Cutting Fields
	Pasting Fields
	Deleting Fields
	Moving Fields
	Resizing Fields
	Aligning Fields
	Importing Fields
	Importing System Variables
	Keyboard Equivalents

	Defining Fields
	Defining Text Fields
	Defining Data Fields
	Defining Selection Boxes
	Defining Selection Box Items

	Defining Constant Selection Box Items
	Defining Variable Selection Box Items
	Box Items
	Modifying a Selection Box Item
	Removing a Selection Box Item
	Moving Selection Box Items

	Defining a Radio Button
	Defining Radio Button Contents

	Defining a Toggle Button
	Defining a Toggle Button Label

	Defining Menu Items
	Editing a Menu Name

	Adding a Menu Item
	Adding a Submenu

	Adding a Menu Separator
	Modifying a Menu Item
	Removing a Menu Item
	Moving a Menu Item

	Defining Push Buttons
	Defining Bitmaps

	Defining Field Attributes
	Defining an Array
	
	Changing the Number of Displayed Occurrences in an Array

	Modifying Field Colors and Representation
	Using Field Rules
	Creating Field Rules
	Copying Field Rules
	Editing Field Rules
	Changing Field Rule Rank
	Unlinking or Deleting Field Rules
	Defining Free Predict Rules
	Converting Free Rules to Inline Rules
	Defining Key Rules

	Defining Data Areas for Maps
	Defining a Data Element
	Modifying a Data Element
	Removing a Data Element

	Testing Maps
	Previewing Maps
	Flipping Maps
	Modifying the Map Profile
	Setting Editor Options
	
	Status Bar
	Ignore Field Mode "Undef."
	Font
	Fixed fonts only

	Status Bar Information

	Data Area Editor
	General Information
	Column Header
	Generating Copycode from a Data Area
	Modifying Data Definitions
	Modifying Fields
	Selecting Fields

	Copying Fields
	Cutting Fields
	Pasting Fields
	Deleting Fields
	Inserting Fields
	Inserting a Data Field
	Defining an Array
	Initializing the Value for a Data Field
	Initializing Values in Free-form Mode
	Inserting a Global Unique ID
	Inserting a Constant
	Inserting a Data Block
	Inserting a Data Structure
	Inserting a Handle
	Inserting a Comment
	To insert a comment into the active data area
	Modifying a Field Definition
	Defining a Counter Variable
	Redefining a Field Definition
	Importing Data Fields into a Data Area
	Importing Periodic Groups

	Searching for Data Fields
	
	Searching for and Replacing Data Field Names
	Repeat Replace
	Replace All

	Setting Editor Options
	
	Insert before
	Insert after
	Status bar
	Column header

	Navigating

	DDM Editor
	DDMs Window
	Adding DDMs
	Adding DDMs from Adabas Databases
	Adding DDMs from SQL Databases
	Additional Options for VSAM Files
	Data Conversion
	Adabas D
	Adabas SQL Server
	DB2
	INFORMIX
	INGRES
	ORACLE
	SYBASE and Microsoft SQL Server

	Modifying DDM Contents
	Selecting Fields
	Selecting Attributes in Fields
	Copying Fields
	Cutting Fields
	Pasting Fields
	Deleting Fields
	Inserting Fields

	Modifying DDM Fields
	Modifying Extended Attributes under a Local Enviroment
	Modifying Extended Attributes under a Remote Enviroment
	Displaying Descriptor Information
	To do so

	Modifying a DDM Header
	To edit the DDM header information

	Modifying Coupling Information

	Searching for DDM Fields
	
	Searching for and Replacing DDM Field Names
	Repeat Replace
	Replace All

	Editor Window Layout
	Setting Editor Options
	DDM Editor Options
	Insert before
	Insert after
	Status Bar
	Column Header
	Short Names

	Status Bar Information
	Column Header

	Dialog Editor
	General Information
	Dialog Editor Window
	Changing the Initial Position of the Dialog
	Changing the Initial Size of the Dialog
	Selecting/Deselecting Dialog Elements
	Aborting Mouse Operations
	Creation Mode in Map Editor and Dialog Editor
	Changing the Position of a Dialog Element
	Changing the Size of a Dialog Element
	Moving the Pointer
	Simulating the Mouse with the Spacebar
	Opening Windows and Dialog Boxes Using The Keyboard
	Scrolling in a Dialog
	Using the Clipboard

	Editing Dialogs
	Editing a Dialog's Source Code
	Editing a Dialog's Attributes
	Editing a Dialog's Event Handlers
	Defining a Dialog's Menu Bar
	Defining a Dialog's Toolbar
	Creating and Maintaining Timers for a Dialog
	Adding a Comment Section to a Dialog
	Defining a Parameter or Local Data Area for a Dialog
	Selecting a Global Data Area for a Dialog
	Defining an Inline Subroutine for a Dialog
	Defining the Control Sequence in a Dialog

	Dialog Wizard
	Creating Dialog Elements
	Importing Data Fields
	Editing Dialog Elements
	Cutting a Dialog Element
	Copying a Dialog Element
	Pasting a Dialog Element from the Clipboard
	Deleting a Dialog Element
	Selecting all Dialog Elements with the same Parent in a Dialog
	Editing a Dialog Element's Attributes
	Editing a Dialog Element's Event Handlers
	Unifying the Size of Several Dialog Elements
	Aligning the Position of Several Dialog Elements
	Unifying the Spacing Between Several Dialog Elements
	Stretching a Dialog Element

	Organizing An Application's Help File
	Using The Help Organizer's Main Dialog
	Generating Help IDs
	Extending A Help ID Definition
	Editing The Global Topic List

	Setting Editor Options
	Enabling The Enhanced Listing Option
	Displaying Or Hiding The Status Bar
	Turning The Crosshair Cursor On And Off
	Turning Autoscroll On And Off
	Displaying The Dialog Inside Or Outside The Editor
	Displaying Bitmaps
	Displaying Or Hiding The Grid
	Customizing The Grid
	Saving Editor Options With A Particular Dialog

	Attributes Windows for Dialogs and Dialog Elements
	ActiveX Control Attributes Window
	Entries

	ActiveX Control Property Pages
	Bitmap Control Attributes Window
	Entries

	Canvas Control Attributes Window
	Entries

	Control Box Control Attributes Window
	Entries

	Dialog Attributes Window
	Entries

	Dialog Context Menus Window
	Entries

	Edit Area Control Attributes Window
	Entries

	Group Frame Control Attributes Window
	Entries

	Input Field Control Attributes Window
	Entries

	List Box Control Attributes Window
	Entries

	Menu Editor Window
	Entries

	OLE Container Control Attributes Window
	Entries

	Selecting an OLE Server or Document
	Differences Between OLE Server, New OLE Object and Existing OLE Object
	OLE Server
	New OLE Object
	Existing OLE Object

	Push Button Control Attributes Window
	Entries

	Radio Button Control Attributes Window
	Entries

	Scrollbar Control Attributes Window
	Entries

	Selection Box Control Attributes Window
	Entries

	Signal Attributes Window
	Entries

	Status Bar Control Attributes Window
	Entries

	Status Bar Control Attributes Subwindow
	Entries

	Table Attributes Window
	Entries

	Table Attributes Subwindow
	Entries

	Text Constant Control Attributes Window
	Entries

	Timer Attributes Window
	Entries

	Toggle Button Control Attributes Window
	Entries

	Toolbar Attributes Window
	Entries

	Tool Bar Control Attributes Window
	Entries

	Tool Bar Control Attributes Subwindow
	Entries

	Dialog Boxes
	Array
	Purpose
	Entries

	Data Area - Local, Parameter
	Purpose

	Data Area - Global
	Purpose

	Dialog Compile Error
	Appears When
	Purpose

	Events
	Purpose
	Entries

	Import Data Field
	Purpose
	Entries

	Font
	Purpose

	Source
	Purpose

	Subroutines
	Purpose
	Entries

	Component Browser
	Introduction
	User Interface
	Tree View
	Groups
	All ActiveX Components
	ActiveX Controls
	Automation Objects
	Interfaces
	Tree Nodes

	Order

	Data View
	
	General
	Properties
	Events
	Methods

	Interaction Tree View and Data View
	Group
	ActiveX Component
	Interface
	Interfaces
	Event Interfaces

	Menu
	
	File
	Edit
	View
	Help

	Application Development Support
	Example Construction
	ActiveX Controls
	General
	Properties
	Events
	Methods

	Automation Objects
	General
	Properties
	Methods

	Interfaces
	Properties
	Methods

	Plug-In Manager
	Purpose of the Plug-In Manager
	Enabling Plug-In Activation
	Activating the Plug-In Manager
	Deactivating the Plug-In Manager
	Using the Plug-In Manager
	Natural Studio Sample Plug-In
	Purpose of the Natural Studio Sample Plug-In
	Activating the Sample Plug-In
	Using the Sample Plug-In
	Deactivating the Sample Plug-In

	Large and Dynamic Variables/Fields
	Introduction
	Definition of Dynamic Variables
	System Variable *LENGTH - field
	Size Limitation Checks
	
	Profile Parameter DSLM
	Profile Parameter USIZE

	Statements EXPAND and REDUCE
	Usage of Dynamic Variables
	Assignments with Dynamic Variables
	Assignment Compatibility

	Initialization of Dynamic Variables
	String Manipulation with Dynamic Alpha Variables
	Logical Condition Criterion - LCC - with Dynamic Variables
	Comparison Compatibility

	Parameter Transfer with Dynamic Variables
	Call By Reference
	Call by Value - Result
	CALL 3GL Program

	Work File Access with Large and Dynamic Variables
	DDM Generation and Editing for Varying Length Columns
	Accessing Large Database Objects
	Parameter with LINDICATOR Clause in SQL Statements

	Performance Aspects with Dynamic Variables
	EXPAND and REDUCE

	Introduction to Event-Driven Programming
	What is an Event-Driven Application?
	Program-Driven Applications
	Event-Driven Applications
	What is Happening Here?
	Writing Event-Driven Code
	Components of an Event-Driven Application
	Overview
	Dialogs
	Dialog Elements
	Attributes
	Event Handlers
	Data Areas - Global, Local, Parameter
	Inline Subroutines

	GUI Development Environments
	GUI Design Tips
	Do Your Research
	Screen Design
	Conversational Screens
	Data-Entry Screens

	Menu Design
	Color Usage
	Consistency Check

	Tasks Involved in Creating an Application
	Tutorial - Overview
	
	To develop the sample application

	Creating a Dialog
	
	To create a new Dialog

	Assigning Attributes to the Dialog
	
	To assign attributes to the dialog

	Creating Dialog Elements Inside the Dialog
	
	To create the dialog elements inside the dialog

	Assigning Attributes to the Dialog Elements
	
	To assign attributes to the dialog elements

	Creating the Application's Local Data Area
	
	To prepare the creation of your local data area, your input-field controls must use linked variables
	To create the application's local data area

	Attaching Event Handler Code to the Dialog Element
	
	To attach event handler code

	Checking, Stowing and Running the Application
	
	To check the application for syntax errors
	To stow your application
	To test your application

	Basic Terminology
	
	Attribute
	Base Dialog
	Control
	Dialog
	Dialog Box
	Dialog Editor
	Dialog Element
	Event
	Event Handler
	Handle
	Item
	MDI - Multiple Document Interface
	MDI Child Window
	MDI Frame Window
	Modal Window
	SDI - Single Document Interface
	Popup
	Window

	Event-Driven Programming Techniques
	How To Open and Close Dialogs
	Opening a Dialog
	To open a dialog from anywhere within an event-driven application
	Operands
	Passing Parameters to the Dialog
	Permanence In Creating, Passing And Checking Data

	Processing Steps When Opening a Dialog
	Closing Dialogs
	operand1

	Initializing Attribute Values

	How To Edit a Dialog's Enhanced Source Code
	What Is The Enhanced Source Code Format ?
	Avoiding Incompatibilities Between Dialog Editor And Program Editor
	How To Use The Enhanced Source Code Format
	To edit a dialog in the enhanced source code format

	How Dialogs, Controls and Items Are Related Hierarchically
	How To Define Dialog Elements
	HANDLE OF GUI
	NULL-HANDLE

	How To Manipulate Dialog Elements
	Querying, Setting and Modifying Attribute Values
	Restrictions
	Numeric/Alphanumeric Assignment

	How To Create and Delete Dialog Elements Dynamically
	Global Attribute List
	Creating Dialog Elements Statically and Dynamically
	How to Handle Events of Dynamically Created Dialog Elements

	How To Enable and Disable Dialog Elements
	Defining and Using Context Menus
	Construction
	Association
	Invocation
	Sharing of Context Menus

	System Variables
	Generated Variables
	#DLG$PARENT
	#DLG$WINDOW

	Message Files and Variables as Sources of Attribute Values
	
	To select a message file number or specify a variable

	Triggering User-Defined Events
	
	Operands

	Passing Parameters to the Dialog
	PARAMETERS-clause

	Suppressing Events
	Menu Structures, Toolbars and the MDI
	Creating a Menu Structure
	If you use the dialog editor
	If you use Natural code
	To build the above menu structure

	Parent-Child Hierarchy in Menu Structures
	Creating a Toolbar
	To use the dialog editor

	Sharing Menu Structures, Toolbars and DILs †MDI Application‡
	To create an MDI frame dialog
	To create an MDI child dialog

	Executing Standardized Procedures
	PROCESS GUI Statement

	Linking Dialog Elements to Natural Variables
	
	To refresh the content of the dialog element after the linked variable has been modified in code
	To use the dialog editor to enter the name of the Natural variable

	Validating Input in a Dialog Element
	
	To specify the edit mask with the dialog editor

	Storing and Retrieving Client Data for a Dialog Element
	
	To query a dialog element for a particular string

	Creating Dialog Elements on a Canvas Control
	
	To create dialog elements on a canvas control

	Working with ActiveX Controls
	
	Terminology
	How To Define an ActiveX Control
	How To Create an ActiveX Control
	Accessing Simple Properties
	Colors
	Pictures
	Fonts
	Variants
	Arrays

	Using The PROCESS GUI Statement
	Performing Methods
	Getting Property Values
	Putting Property Values
	Optional Parameters
	Error handling
	Using Events With Parameters
	Suppressing Events At Runtime

	Working with Arrays of Dialog Elements
	
	To work with arrays of dialog elements:

	Working with Control Boxes
	Purpose of exclusive control boxes
	Examples of use of exclusive control boxes
	Creation of the wizard pages
	Switching between the wizard pages at edit-time
	Creating the divider line
	Implementing the 'Back' and 'Next' push buttons
	Clearing all controls on a wizard page
	Example 2 - a tabbed dialog

	Working with Error Events
	Working with a Group of Radio-Button Controls
	
	To edit the navigation sequence

	Working with List-Box Controls and Selection-Box Controls
	
	Protecting Selection-Box Controls and Input-Field Controls

	Working with Nested Controls
	Which control types can be containers?
	Creating a nested control
	Multiple selection, control sequence and clipboard operations

	Working with a Dynamic Information Line
	
	When you use the dialog editor, you will have to go through the following steps:

	Working with a Status Bar
	Working with Status Bar Controls
	Creating a Status Bar Control
	Using status bar controls without panes
	Stretchy vs. non-stretchy panes
	Outputting text to a status bar control
	Sharing a status bar in an MDI applications
	Pane-specific context menus

	Working with Dynamic Information Line and Status Bar
	Adding a Maximize/Minimize/System Button
	
	To add a Maximize/Minimize/System button to your dialog

	Defining Color
	
	To define a color

	Adding Text in a Certain Font
	
	To choose a specific font for the text assigned to a dialog element †for example, the caption on a push-button control‡, you use the dialog element's attributes window

	Adding Online Help
	
	To create a help topic
	To do so
	To build a help file
	To test a help file
	To display help in a popup window

	Defining Mnemonic and Accelerator Keys
	Defining a Mnemonic Key
	Defining an Accelerator Key
	Displaying Accelerator Keys in Menus

	Dynamic Data Exchange - DDE
	Concepts
	Developing a DDE Server Application
	Registering/Unregistering Services and Topics
	Getting Data From The Client
	Sending Data To The Client
	Terminating DDE Server Operation

	Developing a DDE Client Application
	Connecting With The DDE Server Application
	Using The Services of a DDE Server Application
	Receiving Data From The DDE Server Application
	Disconnecting From The DDE Server Application
	Terminating DDE Client Operation

	Return Codes

	Object Linking and Embedding - OLE
	What Is OLE In The Natural Context?
	OLE Documents Support
	Embedding and Linking
	If you want the OLE container control to display an embedded object when the dialog starts
	If you want to display an embedded object dynamically at runtime
	If you want the OLE container control to display a linked object when the dialog starts
	If you want to display a linked object dynamically at runtime
	Visual Editing - In-place Activation
	ActiveX Controls Support

	The OLE Container Control
	Creating an OLE Container Control
	Creating an OLE Container Control in the Dialog Editor
	To create an OLE container control in the dialog editor
	To display a document in the OLE container when starting the dialog
	Creating an OLE Container Dynamically At Runtime
	Clearing or Deleting an OLE Container At Runtime
	OLE Container Controls And The Dialog's Menu Bar
	Other OLE Container Control Functionality
	Attributes, Events and PROCESS GUI Statement Actions
	Attributes
	Event
	PROCESS GUI Statement Actions

	SYSMAIN Utility - Overview
	SYSMAIN Command
	Copy Object
	Available XREF Options
	Move Object
	Rename Object
	Delete Object
	List an Object
	Find Object
	Importing Objects to a Library
	Invoking SYSMAIN by a Subprogram
	Direct Commands
	FIND and LIST Direct Command Syntax
	COPY and MOVE Direct Command Syntax
	DELETE Direct Command Syntax
	RENAME Direct Command Syntax

	Additional Keywords for Direct Commands

	Tamino Server Extensions
	Introduction
	Overview
	Developing a Tamino Server Extension
	Overview
	Set the Library SYSEXSXS as Steplib
	Create a New Library for Your Project
	Create a NaturalX Class
	Create the Object Data Area
	Edit the Object Data Area
	Link the Connection Interface
	Implement the Method Connect
	Add Server Extension Functions
	Save and Catalog the Class

	Using Callbacks
	Deploying a Tamino Server Extension
	Installing a Tamino Server Extension
	Tamino Server Extension Sample

	XML Toolkit
	cover.pdf
	Cover Page
	page 2

	Table of Contents
	Natural Version 5.1.1 Release Notes for Windows
	General Information
	Operating Systems
	Installation
	Default Version
	License Key File Handling

	Migrating Applications to Version 5.1
	General
	NaturalX COM classes

	Upcoming Natural Releases
	Large and Dynamic Alpha/Binary Formats in Natural RPC
	SYSPAUL and SYSTRANS
	Handling for Database Access Loops with Regard to the Adabas Multifetch Feature

	Known Issues
	Size Limitations Natural RPC Variables
	Restrictions for SYSRPC When Mapped to a Remote Development Server
	Leaving the Natural Debugger on Remote Environment

	Documentation
	Online Help
	Online Documentation as Help

	New Features
	Natural's Single Point of Development - for users of both Natural for Windows and Natural for Mainframes
	Request for Customer Feedback on Application Workspace

	XML Toolkit
	New Features in the Natural Studio User Interface
	Dialog Wizard
	Properties for Natural Objects
	Common Status Bar for Natural Studio
	Results Interface

	Natural Studio Plug-ins and the Plug-In Manager
	New Features in the User Interface for Natural Applications
	Common Controls
	Signals
	Cool Menus

	Portable Generated Programs - GPs
	Entire System Server Interface
	New Parameters
	ESXDB - Natural Configuration Utility
	REMOVE_USER_DOMAIN for .ini Files - Natural Web Adapter Server Extension

	New Natural Statements
	REQUEST DOCUMENT
	PROCESS

	New System Commands
	MAP and UNMAP Commands
	UNLOCK Command

	New User Exits
	USR5001N - USR5016N

	Changes and Enhancements
	General Enhancements
	Steplibs

	Natural Studio User Interface Enhancements
	Extended Options Dialog
	Extended Profiling
	Library Workspace

	User Interface Enhancements for Natural Applications
	Enhanced Bitmap Handling
	Accelerators
	Removed Restrictions

	Parameter Enhancements
	USIZE

	Statement Enhancements
	INTERFACE

	Utility Enhancements
	Interaction with a Remote Development Server
	SYSRPC
	Natural Configuration Utility

	Natural Web Interface
	HTML to Natural Conversion Program - HTML2NAT
	Renamed Programs in Library SYSWEB

	Natural and Tamino
	Example SYSEXINO
	Tamino Server Extensions

	Removed Functionality
	Natural RPC Support of CSCI
	Natural RPC Support of CSCPATT Parameter
	Natural Silk Interface

